Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
J Am Chem Soc. 2013 Feb 27;135(8):3173-85. doi: 10.1021/ja311408y. Epub 2013 Feb 8.
Efficient total synthesis of insulin is important to enable the application of medicinal chemistry to the optimization of the properties of this important protein molecule. Recently we described "ester insulin"--a novel form of insulin in which the function of the 35 residue C-peptide of proinsulin is replaced by a single covalent bond--as a key intermediate for the efficient total synthesis of insulin. Here we describe a fully convergent synthetic route to the ester insulin molecule from three unprotected peptide segments of approximately equal size. The synthetic ester insulin polypeptide chain folded much more rapidly than proinsulin, and at physiological pH. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin (i.e., [Asp(B10), Lys(B28), Pro(B29)]ester insulin) were prepared by total chemical synthesis. The atomic structure of the synthetic ester insulin molecule was determined by racemic protein X-ray crystallography to a resolution of 1.6 Å. Diffraction quality crystals were readily obtained from the racemic mixture of {D-DKP ester insulin + L-DKP ester insulin}, whereas crystals were not obtained from the L-ester insulin alone even after extensive trials. Both the D-protein and L-protein enantiomers of monomeric DKP ester insulin were assayed for receptor binding and in diabetic rats, before and after conversion by saponification to the corresponding DKP insulin enantiomers. L-DKP ester insulin bound weakly to the insulin receptor, while synthetic L-DKP insulin derived from the L-DKP ester insulin intermediate was fully active in binding to the insulin receptor. The D- and L-DKP ester insulins and D-DKP insulin were inactive in lowering blood glucose in diabetic rats, while synthetic L-DKP insulin was fully active in this biological assay. The structural basis of the lack of biological activity of ester insulin is discussed.
胰岛素的高效全合成对于将药物化学应用于优化这种重要蛋白质分子的性质非常重要。最近,我们描述了“酯胰岛素”——一种新型胰岛素形式,其中前胰岛素的 35 个残基 C-肽的功能被一个单共价键取代——作为胰岛素高效全合成的关键中间体。在这里,我们描述了一种从三个未保护的肽段合成酯胰岛素分子的完全收敛合成途径,这些肽段的大小大致相等。合成的酯胰岛素多肽链折叠速度比前胰岛素快得多,并且在生理 pH 值下也是如此。单体 DKP 酯胰岛素的 D-蛋白和 L-蛋白对映体(即[Asp(B10), Lys(B28), Pro(B29)]酯胰岛素)均通过全化学合成制备。通过手性蛋白质 X 射线晶体学确定了合成的酯胰岛素分子的原子结构,分辨率为 1.6Å。从外消旋混合物{D-DKP 酯胰岛素+L-DKP 酯胰岛素}中很容易获得衍射质量的晶体,而即使经过广泛尝试,也无法从单独的 L-酯胰岛素中获得晶体。单体 DKP 酯胰岛素的 D-蛋白和 L-蛋白对映体均进行了受体结合测定,并在糖尿病大鼠中进行了测定,在通过皂化转化为相应的 DKP 胰岛素对映体之前和之后进行了测定。L-DKP 酯胰岛素与胰岛素受体弱结合,而从 L-DKP 酯胰岛素中间体制备的合成 L-DKP 胰岛素在与胰岛素受体结合方面完全具有活性。D-和 L-DKP 酯胰岛素和 D-DKP 胰岛素在降低糖尿病大鼠血糖方面均无活性,而合成的 L-DKP 胰岛素在该生物学测定中完全具有活性。讨论了酯胰岛素缺乏生物活性的结构基础。