Department of Biochemistry and Molecular Biology, Mayo Clinic Rochester, Rochester, MN 55905, USA.
Biochemistry. 2013 Feb 19;52(7):1249-59. doi: 10.1021/bi301500d. Epub 2013 Feb 6.
Myosin is the chemomechanical energy transducer in striated heart muscle. The myosin cross-bridge applies impulsive force to actin while consuming ATP chemical energy to propel myosin thick filaments relative to actin thin filaments in the fiber. Transduction begins with ATP hydrolysis in the cross-bridge driving rotary movement of a lever arm converting torque into linear displacement. Myosin regulatory light chain (RLC) binds to the lever arm and modifies its ability to translate actin. Gene sequencing implicated several RLC mutations in heart disease, and three of them are investigated here using photoactivatable GFP-tagged RLC (RLC-PAGFP) exchanged into permeabilized papillary muscle fibers. A single-lever arm probe orientation is detected in the crowded environment of the muscle fiber by using RLC-PAGFP with dipole orientation deduced from the three-spatial dimension fluorescence emission pattern of the single molecule. Symmetry and selection rules locate dipoles in their half-sarcomere, identify those at the minimal free energy, and specify active dipole contraction intermediates. Experiments were performed in a microfluidic chamber designed for isometric contraction, total internal reflection fluorescence detection, and two-photon excitation second harmonic generation to evaluate sarcomere length. The RLC-PAGFP reports apparently discretized lever arm orientation intermediates in active isometric fibers that on average produce the stall force. Disease-linked mutants introduced into RLC move intermediate occupancy further down the free energy gradient, implying lever arms rotate more to reach stall force because mutant RLC increases lever arm shear strain. A lower free energy intermediate occupancy involves a lower energy conversion efficiency in the fiber relating a specific myosin function modification to the disease-implicated mutant.
肌球蛋白是横纹心肌中的化学机械能量转换器。肌球蛋白横桥在消耗 ATP 化学能的同时向肌动蛋白施加冲动力,从而推动肌球蛋白粗丝相对于纤维中的肌动蛋白细丝移动。转导始于横桥中的 ATP 水解,驱动杠杆臂的旋转运动,将扭矩转化为线性位移。肌球蛋白调节轻链(RLC)与杠杆臂结合,并改变其翻译肌动蛋白的能力。基因测序表明,几种 RLC 突变与心脏病有关,其中三种突变在此使用光活化 GFP 标记的 RLC(RLC-PAGFP)交换到透化的乳头肌纤维中进行研究。通过使用 RLC-PAGFP 检测到肌纤维拥挤环境中的单杠杆臂探针取向,通过单分子的三个空间维度荧光发射模式推断出偶极取向。对称性和选择规则将偶极子定位在其半肌节中,确定处于最小自由能的偶极子,并指定活性偶极收缩中间产物。实验在设计用于等长收缩、全内反射荧光检测和双光子激发二次谐波产生的微流控室中进行,以评估肌节长度。RLC-PAGFP 报告了在活跃的等长纤维中明显离散的杠杆臂取向中间体,这些中间体平均产生停顿力。引入 RLC 的疾病相关突变体将中间占有率进一步向下移动自由能梯度,这意味着杠杆臂旋转更多以达到停顿力,因为突变 RLC 增加了杠杆臂剪切应变。较低的自由能中间占有率涉及纤维中较低的能量转换效率,将特定的肌球蛋白功能修饰与涉及疾病的突变体联系起来。