Ochala Julien, Feng Miao, Wang Qian, Chaami Chahida, Nollet Edgar, Lewis Christopher T A, Hessel Anthony L, Michels Michelle, Bedi Kenneth C, Margulies Kenneth B, Pinto Jose R, Campbell Kenneth S, Kuster Diederik W D, van der Velden Jolanda
Department of Biomedical Sciences, University of Copenhagen, Denmark (J.O., C.C., E.N., C.T.A.L.).
Myocardial Homeostasis and Cardiac Injury Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (J.O.).
Circ Heart Fail. 2025 May 20:e012614. doi: 10.1161/CIRCHEARTFAILURE.124.012614.
Hypertrophic cardiomyopathy is often linked to likely pathogenic and pathogenic variants in genes encoding myofilament proteins. The exact molecular mechanisms by which these lead to cardiac dysfunction and metabolic remodeling remain incompletely understood. Hence, here, we sought to determine whether likely pathogenic and pathogenic variants in thick () and thin ( or ) filament genes modulate the myosin super-relaxed state, a critical molecular regulator of heart energetics.
We isolated cardiac strips from the septum of 13 patients with hypertrophic cardiomyopathy with , , or gene variants and 10 nonfailing donors. We performed 2'-(or-3')--(-methylanthraniloyl) ATP chase experiments and X-ray diffraction as well as all-atomistic molecular dynamics simulations.
We observed that, despite preserved myofilament lattice, likely pathogenic and pathogenic variants in thick and thin filament proteins have opposite effects on cardiac myosin autoinhibition and the subsequent proportion of myosin molecules in the ATP-preserving super-relaxed state. As expected, -associated thick filament variants depressed myosin super-relaxation. However, with - or -related thin filament variants, myosin heads adopt an energy-saving biochemical hibernating state. Ultimately, these thin filament defects blunted the in vitro response to the hypertrophic cardiomyopathy-targeted inhibitor, mavacamten.
Our findings indicate that, in hypertrophic cardiomyopathy, cardiac myosin super-relaxed state, associated ATP consumption, and in vitro mavacamten responsiveness depend on the type of myofilament variants. Our data warrant careful analyses of variant-specific responses to myosin inhibitors in the clinic.
肥厚型心肌病常与编码肌丝蛋白的基因中可能的致病和致病变异相关。这些变异导致心脏功能障碍和代谢重塑的确切分子机制仍未完全明确。因此,在此我们试图确定粗肌丝()和细肌丝(或)基因中的可能致病和致病变异是否会调节肌球蛋白超松弛状态,这是心脏能量代谢的关键分子调节因子。
我们从13例携带、或基因变异的肥厚型心肌病患者的室间隔以及10例心脏功能正常的供体中分离出心脏组织条。我们进行了2' -(或 - 3') - ( - 甲基蒽酰胺基)ATP追踪实验、X射线衍射以及全原子分子动力学模拟。
我们观察到,尽管肌丝晶格保持完整,但粗肌丝和细肌丝蛋白中的可能致病和致病变异对心肌肌球蛋白的自身抑制以及随后处于ATP保存超松弛状态的肌球蛋白分子比例具有相反的影响。正如预期的那样,相关的粗肌丝变异会降低肌球蛋白超松弛。然而,对于或相关的细肌丝变异,肌球蛋白头部会进入节能的生化休眠状态。最终,这些细肌丝缺陷减弱了体外对肥厚型心肌病靶向抑制剂mavacamten的反应。
我们的研究结果表明,在肥厚型心肌病中,心肌肌球蛋白超松弛状态、相关的ATP消耗以及体外对mavacamten的反应性取决于肌丝变异的类型。我们的数据表明在临床上需要仔细分析对肌球蛋白抑制剂的变异特异性反应。