Suppr超能文献

对脉动型视网膜下电刺激的反应:幅度和持续时间的影响。

Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration.

机构信息

Center for Innovative Visual Rehabilitation, Veterans Affairs Boston Healthcare System, Boston, MA, USA.

出版信息

J Neurophysiol. 2013 Apr;109(7):1954-68. doi: 10.1152/jn.00293.2012. Epub 2013 Jan 23.

Abstract

In working to improve the quality of visual percepts elicited by retinal prosthetics, considerable effort has been made to understand how retinal neurons respond to electric stimulation. Whereas responses arising from direct activation of retinal ganglion cells have been well studied, responses arising through indirect activation (e.g., secondary to activation of bipolar cells) are not as well understood. Here, we used cell-attached, patch-clamp recordings to measure the responses of rabbit ganglion cells in vitro to a wide range of stimulus-pulse parameters (amplitudes: 0-100 μA; durations: 0.1-50 ms), applied to a 400-μm-diameter, subretinal-stimulating electrode. The indirect responses generally consisted of multiple action potentials that were clustered into bursts, although the latency and number of spikes within a burst were highly variable. When different parameter pairs representing identical charge levels were compared, the shortest pulse durations generally elicited the most spikes. In addition, latencies were shortest, and jitter was lowest for short pulses. These findings suggest that short pulses are optimum for activation of presynaptic neurons, and therefore, short pulses are more effective for both direct as well as indirect activation.

摘要

为了提高视网膜假体所引发的视觉感知质量,人们做出了相当大的努力来理解视网膜神经元对电刺激的反应。虽然已经很好地研究了直接激活视网膜神经节细胞引起的反应,但对于通过间接激活(例如,继发于双极细胞的激活)引起的反应却了解不多。在这里,我们使用细胞贴附、膜片钳记录技术,测量了兔眼神经节细胞在体外对广泛刺激脉冲参数(幅度:0-100 μA;持续时间:0.1-50 ms)的反应,这些参数施加于一个 400-μm 直径的视网膜下刺激电极上。间接反应通常由多个动作电位组成,这些动作电位簇集成爆发,尽管爆发内的潜伏期和尖峰数量高度可变。当比较代表相同电荷量的不同参数对时,最短的脉冲持续时间通常会引发最多的尖峰。此外,短脉冲的潜伏期最短,抖动最低。这些发现表明,短脉冲最适合激活突触前神经元,因此,短脉冲对于直接和间接激活都更有效。

相似文献

1
Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration.
J Neurophysiol. 2013 Apr;109(7):1954-68. doi: 10.1152/jn.00293.2012. Epub 2013 Jan 23.
2
Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode.
Exp Eye Res. 2006 Aug;83(2):367-73. doi: 10.1016/j.exer.2006.01.012. Epub 2006 Apr 17.
3
Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.
J Neurophysiol. 2009 Nov;102(5):2982-93. doi: 10.1152/jn.00545.2009. Epub 2009 Sep 9.
4
High frequency electric stimulation of retinal neurons elicits physiological signaling patterns.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1077-80. doi: 10.1109/IEMBS.2011.6090251.
5
In vivo electrical stimulation of rabbit retina: effect of stimulus duration and electrical field orientation.
Exp Eye Res. 2006 Aug;83(2):247-54. doi: 10.1016/j.exer.2005.11.023. Epub 2006 Jun 5.
6
Direct activation of retinal ganglion cells with subretinal stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:618-21. doi: 10.1109/IEMBS.2009.5333494.
7
A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
J Neurophysiol. 2006 Feb;95(2):970-8. doi: 10.1152/jn.00849.2005. Epub 2005 Oct 19.
9
Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes.
J Neural Eng. 2014 Apr;11(2):026008. doi: 10.1088/1741-2560/11/2/026008. Epub 2014 Mar 10.
10
Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type.
J Neural Eng. 2018 Jun;15(3):036010. doi: 10.1088/1741-2552/aaadc1. Epub 2018 Feb 8.

引用本文的文献

3
Selective Activation of Retinal Ganglion Cell Subtypes Through Targeted Electrical Stimulation Parameters.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:350-359. doi: 10.1109/TNSRE.2022.3149967. Epub 2022 Feb 17.
5
Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation.
eNeuro. 2021 Dec 23;8(6). doi: 10.1523/ENEURO.0506-20.2021. Print 2021 Nov-Dec.
7
The impact of synchronous versus asynchronous electrical stimulation in artificial vision.
J Neural Eng. 2021 Apr 27;18(5). doi: 10.1088/1741-2552/abecf1.
8
Values encoded in orbitofrontal cortex are causally related to economic choices.
Nature. 2020 Dec;588(7838):450-453. doi: 10.1038/s41586-020-2880-x. Epub 2020 Nov 2.
9
Retinal Degeneration Reduces Consistency of Network-Mediated Responses Arising in Ganglion Cells to Electric Stimulation.
IEEE Trans Neural Syst Rehabil Eng. 2020 Sep;28(9):1921-1930. doi: 10.1109/TNSRE.2020.3003345. Epub 2020 Jun 18.

本文引用的文献

1
Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms.
J Neural Eng. 2011 Aug;8(4):046005. doi: 10.1088/1741-2560/8/4/046005. Epub 2011 May 31.
2
Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas.
J Neural Eng. 2011 Jun;8(3):035003. doi: 10.1088/1741-2560/8/3/035003. Epub 2011 May 18.
3
Resolution of the epiretinal prosthesis is not limited by electrode size.
IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):436-42. doi: 10.1109/TNSRE.2011.2140132. Epub 2011 Apr 19.
4
Inner and outer retinal mechanisms engaged by epiretinal stimulation in normal and rd mice.
Vis Neurosci. 2011 Mar;28(2):145-54. doi: 10.1017/S0952523810000489.
5
Multiple components of ganglion cell desensitization in response to prosthetic stimulation.
J Neural Eng. 2011 Feb;8(1):016008. doi: 10.1088/1741-2560/8/1/016008. Epub 2011 Jan 19.
6
Selective activation of neuronal targets with sinusoidal electric stimulation.
J Neurophysiol. 2010 Nov;104(5):2778-91. doi: 10.1152/jn.00551.2010. Epub 2010 Sep 1.
7
Direct activation and temporal response properties of rabbit retinal ganglion cells following subretinal stimulation.
J Neurophysiol. 2009 Nov;102(5):2982-93. doi: 10.1152/jn.00545.2009. Epub 2009 Sep 9.
8
Effects of high-level pulse train stimulation on retinal function.
J Neural Eng. 2009 Jun;6(3):035005. doi: 10.1088/1741-2560/6/3/035005. Epub 2009 May 20.
9
Selective labeling of retinal ganglion cells with calcium indicators by retrograde loading in vitro.
J Neurosci Methods. 2009 May 15;179(2):166-72. doi: 10.1016/j.jneumeth.2009.01.019. Epub 2009 Jan 31.
10
Development and implantation of a minimally invasive wireless subretinal neurostimulator.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2502-11. doi: 10.1109/TBME.2009.2021401. Epub 2009 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验