Suppr超能文献

最小化铱氧化物电极以实现高视觉敏锐度的视网膜下刺激。

Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation.

机构信息

Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.

Department of Psychology, University of California San Diego, La Jolla, CA 92093.

出版信息

eNeuro. 2021 Dec 23;8(6). doi: 10.1523/ENEURO.0506-20.2021. Print 2021 Nov-Dec.

Abstract

Vision loss from diseases of the outer retina, such as age-related macular degeneration, is among the leading causes of irreversible blindness in the world today. The goal of retinal prosthetics is to replace the photo-sensing function of photoreceptors lost in these diseases with optoelectronic hardware to electrically stimulate patterns of retinal activity corresponding to vision. To enable high-resolution retinal prosthetics, the scale of stimulating electrodes must be significantly decreased from current designs; however, this reduces the amount of stimulating current that can be delivered. The efficacy of subretinal stimulation at electrode sizes suitable for high visual acuity retinal prosthesis are not well understood, particularly within the safe charge injection limits of electrode materials. Here, we measure retinal ganglion cell (RGC) responses in a mouse model of blindness to evaluate the stimulation efficacy of 10, 20, and 30 μm diameter iridium oxide electrodes within the electrode charge injection limits, focusing on measures of charge threshold and dynamic range. Stimulation thresholds were lower for smaller electrodes, but larger electrodes could elicit a greater dynamic range of spikes and recruited more ganglion cells within charge injection limits. These findings suggest a practical lower limit for planar electrode size and indicate strategies for maximizing stimulation thresholds and dynamic range.

摘要

由外视网膜疾病引起的视力丧失,如年龄相关性黄斑变性,是当今世界导致不可逆转失明的主要原因之一。视网膜假体的目标是用光电硬件替代这些疾病中丧失的光感受器的感光功能,通过电刺激与视觉相对应的视网膜活动模式。为了实现高分辨率的视网膜假体,刺激电极的尺寸必须从当前设计显著减小;然而,这会降低可传递的刺激电流的量。在适合高视觉分辨率视网膜假体的电极尺寸下,亚视网膜刺激的效果尚不清楚,特别是在电极材料的安全电荷注入限制范围内。在这里,我们在失明的小鼠模型中测量了视网膜神经节细胞 (RGC) 的反应,以评估在电极电荷注入限制范围内,10、20 和 30 μm 直径氧化铱电极的刺激效果,重点是测量电荷阈值和动态范围。较小的电极具有较低的刺激阈值,但较大的电极可以产生更大的尖峰动态范围,并在电荷注入限制范围内招募更多的神经节细胞。这些发现表明平面电极尺寸存在实际的下限,并指出了最大化刺激阈值和动态范围的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12a8/8704424/551185ca2ac7/ENEURO.0506-20.2021_f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验