Suppr超能文献

外突触谷氨酸和抑制性神经递质调节谷氨酸能视网膜波期间神经节细胞的参与。

Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves.

机构信息

Vision Sciences Graduate Program, Department of Optometry, University of California, Berkeley, CA, USA.

出版信息

J Neurophysiol. 2013 Apr;109(7):1969-78. doi: 10.1152/jn.00039.2013. Epub 2013 Jan 23.

Abstract

During the first 2 wk of mouse postnatal development, transient retinal circuits give rise to the spontaneous initiation and lateral propagation of depolarizations across the ganglion cell layer (GCL). Glutamatergic retinal waves occur during the second postnatal week, when GCL depolarizations are mediated by ionotropic glutamate receptors. Bipolar cells are the primary source of glutamate in the inner retina, indicating that the propagation of waves depends on their activation. Using the fluorescence resonance energy transfer-based optical sensor of glutamate FLII81E-1μ, we found that retinal waves are accompanied by a large transient increase in extrasynaptic glutamate throughout the inner plexiform layer. Using two-photon Ca(2+) imaging to record spontaneous Ca(2+) transients in large populations of cells, we found that despite this spatially diffuse source of depolarization, only a subset of neurons in the GCL and inner nuclear layer (INL) are robustly depolarized during retinal waves. Application of the glutamate transporter blocker dl-threo-β-benzyloxyaspartate (25 μM) led to a significant increase in cell participation in both layers, indicating that the concentration of extrasynaptic glutamate affects cell participation in both the INL and GCL. In contrast, blocking inhibitory transmission with the GABAA receptor antagonist gabazine and the glycine receptor antagonist strychnine increased cell participation in the GCL without significantly affecting the INL. These data indicate that during development, glutamate spillover provides a spatially diffuse source of depolarization, but that inhibitory circuits dictate which neurons within the GCL participate in retinal waves.

摘要

在小鼠出生后的前 2 周,短暂的视网膜回路会引起跨节细胞层 (GCL) 的去极化的自发起始和横向传播。在出生后的第二周,当 GCL 的去极化由离子型谷氨酸受体介导时,会发生谷氨酸能视网膜波。双极细胞是内视网膜中谷氨酸的主要来源,这表明波的传播取决于它们的激活。使用基于荧光共振能量转移的谷氨酸光学传感器 FLII81E-1μ,我们发现视网膜波伴随着内丛状层中整个突触外谷氨酸的大量短暂增加。使用双光子 Ca(2+)成像记录大群体细胞中的自发 Ca(2+)瞬变,我们发现尽管存在这种空间弥散的去极化源,但在视网膜波期间,只有 GCL 和内核层 (INL) 的一小部分神经元被强烈去极化。应用谷氨酸转运体阻滞剂 dl-threo-β-苯甲氧基天冬氨酸 (25 μM) 会导致两层中细胞参与的显著增加,表明突触外谷氨酸的浓度会影响 INL 和 GCL 中细胞的参与。相比之下,用 GABAA 受体拮抗剂 gabazine 和甘氨酸受体拮抗剂士的宁阻断抑制性传递会增加 GCL 中的细胞参与,而对 INL 没有显著影响。这些数据表明,在发育过程中,谷氨酸溢出提供了一个空间弥散的去极化源,但抑制性回路决定了 GCL 中的哪些神经元参与视网膜波。

相似文献

1
Extrasynaptic glutamate and inhibitory neurotransmission modulate ganglion cell participation during glutamatergic retinal waves.
J Neurophysiol. 2013 Apr;109(7):1969-78. doi: 10.1152/jn.00039.2013. Epub 2013 Jan 23.
2
Synaptic and extrasynaptic factors governing glutamatergic retinal waves.
Neuron. 2009 Apr 30;62(2):230-41. doi: 10.1016/j.neuron.2009.03.015.
3
Excitatory synaptic inputs to mouse on-off direction-selective retinal ganglion cells lack direction tuning.
J Neurosci. 2014 Mar 12;34(11):3976-81. doi: 10.1523/JNEUROSCI.5017-13.2014.
5
Analysis of excitatory and inhibitory spontaneous synaptic activity in mouse retinal ganglion cells.
J Neurophysiol. 1998 Sep;80(3):1327-40. doi: 10.1152/jn.1998.80.3.1327.
6
Müller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors.
Cell Rep. 2019 Jun 4;27(10):2871-2880.e2. doi: 10.1016/j.celrep.2019.05.011.
8
Disinhibitory recruitment of NMDA receptor pathways in retina.
J Neurophysiol. 2014 Jul 1;112(1):193-203. doi: 10.1152/jn.00817.2013. Epub 2014 Apr 9.
9
Inner retinal mechanisms engaged by retinal electrical stimulation.
Invest Ophthalmol Vis Sci. 2006 Jun;47(6):2606-12. doi: 10.1167/iovs.05-1093.

引用本文的文献

2
Building a circuit through correlated spontaneous neuronal activity in the developing vertebrate and invertebrate visual systems.
Genes Dev. 2021 May 1;35(9-10):677-691. doi: 10.1101/gad.348241.121. Epub 2021 Apr 22.
3
Müller Glial Cells Participate in Retinal Waves via Glutamate Transporters and AMPA Receptors.
Cell Rep. 2019 Jun 4;27(10):2871-2880.e2. doi: 10.1016/j.celrep.2019.05.011.
5
Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry.
Front Neural Circuits. 2016 Jul 26;10:54. doi: 10.3389/fncir.2016.00054. eCollection 2016.
6
Glutamatergic Retinal Waves.
Front Neural Circuits. 2016 May 10;10:38. doi: 10.3389/fncir.2016.00038. eCollection 2016.
9
10
Single-cell imaging tools for brain energy metabolism: a review.
Neurophotonics. 2014 Jul;1(1):011004. doi: 10.1117/1.NPh.1.1.011004. Epub 2014 May 29.

本文引用的文献

1
Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina.
J Neurosci. 2012 Apr 18;32(16):5426-39. doi: 10.1523/JNEUROSCI.0194-12.2012.
2
Intrinsic properties and functional circuitry of the AII amacrine cell.
Vis Neurosci. 2012 Jan;29(1):51-60. doi: 10.1017/S0952523811000368.
3
Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves.
J Neurosci. 2012 Jan 18;32(3):850-63. doi: 10.1523/JNEUROSCI.5309-12.2012.
4
Glutamate spillover between mammalian cone photoreceptors.
J Neurosci. 2011 Sep 21;31(38):13431-41. doi: 10.1523/JNEUROSCI.2105-11.2011.
5
Assembly and disassembly of a retinal cholinergic network.
Vis Neurosci. 2012 Jan;29(1):61-71. doi: 10.1017/S0952523811000216. Epub 2011 Jul 26.
6
Fast glutamate uptake via EAAT2 shapes the cone-mediated light offset response in bipolar cells.
J Physiol. 2010 Oct 15;588(Pt 20):3943-56. doi: 10.1113/jphysiol.2010.191437.
7
Direction-selective ganglion cells show symmetric participation in retinal waves during development.
J Neurosci. 2010 Aug 18;30(33):11197-201. doi: 10.1523/JNEUROSCI.2302-10.2010.
9
Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission.
Vis Neurosci. 2010 Mar;27(1-2):1-8. doi: 10.1017/S0952523810000076. Epub 2010 Apr 15.
10
Imaging extrasynaptic glutamate dynamics in the brain.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6526-31. doi: 10.1073/pnas.0913154107. Epub 2010 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验