Vision Sciences Graduate Program, Department of Optometry, University of California, Berkeley, CA, USA.
J Neurophysiol. 2013 Apr;109(7):1969-78. doi: 10.1152/jn.00039.2013. Epub 2013 Jan 23.
During the first 2 wk of mouse postnatal development, transient retinal circuits give rise to the spontaneous initiation and lateral propagation of depolarizations across the ganglion cell layer (GCL). Glutamatergic retinal waves occur during the second postnatal week, when GCL depolarizations are mediated by ionotropic glutamate receptors. Bipolar cells are the primary source of glutamate in the inner retina, indicating that the propagation of waves depends on their activation. Using the fluorescence resonance energy transfer-based optical sensor of glutamate FLII81E-1μ, we found that retinal waves are accompanied by a large transient increase in extrasynaptic glutamate throughout the inner plexiform layer. Using two-photon Ca(2+) imaging to record spontaneous Ca(2+) transients in large populations of cells, we found that despite this spatially diffuse source of depolarization, only a subset of neurons in the GCL and inner nuclear layer (INL) are robustly depolarized during retinal waves. Application of the glutamate transporter blocker dl-threo-β-benzyloxyaspartate (25 μM) led to a significant increase in cell participation in both layers, indicating that the concentration of extrasynaptic glutamate affects cell participation in both the INL and GCL. In contrast, blocking inhibitory transmission with the GABAA receptor antagonist gabazine and the glycine receptor antagonist strychnine increased cell participation in the GCL without significantly affecting the INL. These data indicate that during development, glutamate spillover provides a spatially diffuse source of depolarization, but that inhibitory circuits dictate which neurons within the GCL participate in retinal waves.
在小鼠出生后的前 2 周,短暂的视网膜回路会引起跨节细胞层 (GCL) 的去极化的自发起始和横向传播。在出生后的第二周,当 GCL 的去极化由离子型谷氨酸受体介导时,会发生谷氨酸能视网膜波。双极细胞是内视网膜中谷氨酸的主要来源,这表明波的传播取决于它们的激活。使用基于荧光共振能量转移的谷氨酸光学传感器 FLII81E-1μ,我们发现视网膜波伴随着内丛状层中整个突触外谷氨酸的大量短暂增加。使用双光子 Ca(2+)成像记录大群体细胞中的自发 Ca(2+)瞬变,我们发现尽管存在这种空间弥散的去极化源,但在视网膜波期间,只有 GCL 和内核层 (INL) 的一小部分神经元被强烈去极化。应用谷氨酸转运体阻滞剂 dl-threo-β-苯甲氧基天冬氨酸 (25 μM) 会导致两层中细胞参与的显著增加,表明突触外谷氨酸的浓度会影响 INL 和 GCL 中细胞的参与。相比之下,用 GABAA 受体拮抗剂 gabazine 和甘氨酸受体拮抗剂士的宁阻断抑制性传递会增加 GCL 中的细胞参与,而对 INL 没有显著影响。这些数据表明,在发育过程中,谷氨酸溢出提供了一个空间弥散的去极化源,但抑制性回路决定了 GCL 中的哪些神经元参与视网膜波。