Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720, USA.
J Neurosci. 2012 Jan 18;32(3):850-63. doi: 10.1523/JNEUROSCI.5309-12.2012.
Before vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here, we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated-patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development.
在视觉出现之前,一个短暂的、反复连接的胆碱能中间神经元网络,称为星爆型无长突细胞(SAC),会产生自发的视网膜波。尽管没有强大的抑制作用,胆碱能视网膜波的发生仍然很少,并且在有限的边界内传播。在这里,我们结合了各种电生理和成像技术以及计算建模,以阐明发育中的小鼠视网膜中波的这些时空特性的机制。波的起始是通过 SAC 的罕见自发去极化引起的。波的传播是通过 SAC 之间的反复胆碱能连接和 ACh 的容积释放来实现的,这可以通过配对记录和基于细胞的 ACh 光学传感器来证明。穿孔贴片记录和双光子钙成像显示,单个 SAC 具有缓慢的后超极化,这导致 SAC 在连续的波中具有不同的去极化。使用一个基于这些生理测量的 SAC 特性的计算模型,我们再现了记录波的慢频率、速度和有限大小。这项研究代表了介导胆碱能视网膜波的电路的详细描述,并表明产生这种网络活动的中间神经元的可变性对于不同物种和发育阶段的波的稳健性可能是至关重要的。