Suppr超能文献

用于诊断人工假体植入物松动的被动传感器阵列的研究。

Investigation of a passive sensor array for diagnosis of loosening of endoprosthetic implants.

机构信息

Department of Orthopaedics, University Medicine Rostock, Rostock, Germany.

出版信息

Sensors (Basel). 2012 Dec 20;13(1):1-20. doi: 10.3390/s130100001.

Abstract

Currently, imaging methods are used to diagnose loosening of endoprosthetic implants, but fail to achieve 100% accuracy. In this study, a passive sensor array which is based on the interaction between magnetic oscillators inside the implant and an excitation coil outside the patient was investigated. The excited oscillators produce sound in the audible range, which varies according to the extent of loosening. By performing several experimental tests, the sensor array was optimized to guarantee reproducible and selective excitation of the sound emission. Variation in the distance between the oscillators demonstrated a definite influence on the quality of the generated sound signal. Furthermore, a numerical design analysis using the boundary element method was generated for consideration of the magnetic field and the selectivity of the oscillators during excitation. The numerical simulation of the coil showed the higher selectivity of a coil with a C-shape compared to a cylindrical coil. Based on these investigations, the passive sensor system reveals the potential for detection of implant loosening. Future aims include the further miniaturization of the oscillators and measurements to determine the sensitivity of the proposed sensor system.

摘要

目前,影像学方法被用于诊断人工植入物松动,但无法达到 100%的准确率。本研究中,我们研究了一种基于植入物内的磁振荡器与患者体外激励线圈之间相互作用的被动传感器阵列。被激励的振荡器会产生可听范围内的声音,其变化程度与松动程度相关。通过进行多次实验测试,对传感器阵列进行了优化,以保证声音发射的可重复选择性激发。振荡器之间的距离变化对产生的声音信号质量有明显影响。此外,还使用边界元法生成了数值设计分析,以考虑激励过程中的磁场和振荡器的选择性。对线圈的数值模拟表明,C 形线圈比圆柱形线圈具有更高的选择性。基于这些研究,被动传感器系统显示出检测植入物松动的潜力。未来的目标包括进一步缩小振荡器的尺寸,并进行测量以确定所提出的传感器系统的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54e3/3574661/da6cbe017096/sensors-13-00001f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验