Suppr超能文献

基因组改变图谱的网络分析揭示了胶质母细胞瘤的共同改变功能模块和驱动基因。

Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

作者信息

Gu Yunyan, Wang Hongwei, Qin Yao, Zhang Yujing, Zhao Wenyuan, Qi Lishuang, Zhang Yuannv, Wang Chenguang, Guo Zheng

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China.

出版信息

Mol Biosyst. 2013 Mar;9(3):467-77. doi: 10.1039/c2mb25528f. Epub 2013 Jan 23.

Abstract

The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

摘要

人类癌症基因组中基因改变的异质性给我们深入理解癌症机制和识别癌症驱动基因带来了重大挑战。为了解决这种异质性问题,人们提出了许多方法来研究基因改变,并在个体通路水平预测驱动基因。然而,这些方法大多忽略了通路之间改变事件的相关性,遗漏了许多虽有罕见改变但共同促成致癌作用的基因。在此,我们设计了一种基于网络的方法,以捕捉隐藏在来自癌症基因组图谱(TCGA)的胶质母细胞瘤(GBM)全基因组体细胞突变和拷贝数改变图谱中的协同功能模块,其中一个模块是一组在蛋白质相互作用网络中具有密集相互作用的改变基因。我们识别出7对显著共改变的模块,它们涉及已知在GBM中发生改变的主要通路(TP53、RB和RTK信号通路),并突出了这些GBM通路中显著的共现改变。通过考虑基因改变的非随机相关性,共改变特性能够区分包含参与GBM进展的驱动基因的致癌模块。癌症通路之间的协同作用表明,冗余模型和加重模型可能为致癌过程中的潜在机制提供新的见解,并为癌症治疗策略的设计提供新的线索。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验