Suppr超能文献

胶质母细胞瘤基因组中复发性分子异常的综合特征分析。

An integrative characterization of recurrent molecular aberrations in glioblastoma genomes.

机构信息

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC and Institute of Information Science, Academia Sinica, Taipei, Taiwan, ROC.

出版信息

Nucleic Acids Res. 2013 Oct;41(19):8803-21. doi: 10.1093/nar/gkt656. Epub 2013 Jul 31.

Abstract

Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults. Decades of investigations and the recent effort of the Cancer Genome Atlas (TCGA) project have mapped many molecular alterations in GBM cells. Alterations on DNAs may dysregulate gene expressions and drive malignancy of tumors. It is thus important to uncover causal and statistical dependency between 'effector' molecular aberrations and 'target' gene expressions in GBMs. A rich collection of prior studies attempted to combine copy number variation (CNV) and mRNA expression data. However, systematic methods to integrate multiple types of cancer genomic data-gene mutations, single nucleotide polymorphisms, CNVs, DNA methylations, mRNA and microRNA expressions and clinical information-are relatively scarce. We proposed an algorithm to build 'association modules' linking effector molecular aberrations and target gene expressions and applied the module-finding algorithm to the integrated TCGA GBM data sets. The inferred association modules were validated by six tests using external information and datasets of central nervous system tumors: (i) indication of prognostic effects among patients; (ii) coherence of target gene expressions; (iii) retention of effector-target associations in external data sets; (iv) recurrence of effector molecular aberrations in GBM; (v) functional enrichment of target genes; and (vi) co-citations between effectors and targets. Modules associated with well-known molecular aberrations of GBM-such as chromosome 7 amplifications, chromosome 10 deletions, EGFR and NF1 mutations-passed the majority of the validation tests. Furthermore, several modules associated with less well-reported molecular aberrations-such as chromosome 11 CNVs, CD40, PLXNB1 and GSTM1 methylations, and mir-21 expressions-were also validated by external information. In particular, modules constituting trans-acting effects with chromosome 11 CNVs and cis-acting effects with chromosome 10 CNVs manifested strong negative and positive associations with survival times in brain tumors. By aligning the information of association modules with the established GBM subclasses based on transcription or methylation levels, we found each subclass possessed multiple concurrent molecular aberrations. Furthermore, the joint molecular characteristics derived from 16 association modules had prognostic power not explained away by the strong biomarker of CpG island methylator phenotypes. Functional and survival analyses indicated that immune/inflammatory responses and epithelial-mesenchymal transitions were among the most important determining processes of prognosis. Finally, we demonstrated that certain molecular aberrations uniquely recurred in GBM but were relatively rare in non-GBM glioma cells. These results justify the utility of an integrative analysis on cancer genomes and provide testable characterizations of driver aberration events in GBM.

摘要

胶质母细胞瘤(GBM)是成人中最常见和最恶性的原发性脑肿瘤。几十年来的研究和最近癌症基因组图谱(TCGA)项目的努力已经在 GBM 细胞中绘制了许多分子改变。DNA 上的改变可能会使基因表达失调,并导致肿瘤的恶性。因此,揭示 GBM 中“效应”分子异常与“靶”基因表达之间的因果关系和统计依赖性非常重要。大量先前的研究试图结合拷贝数变异(CNV)和 mRNA 表达数据。然而,将多种类型的癌症基因组数据(基因突变、单核苷酸多态性、CNV、DNA 甲基化、mRNA 和 microRNA 表达以及临床信息)整合在一起的系统方法相对较少。我们提出了一种算法来构建连接效应分子异常和靶基因表达的“关联模块”,并将模块发现算法应用于整合的 TCGA GBM 数据集。使用外部信息和中枢神经系统肿瘤数据集对推断出的关联模块进行了六种测试的验证:(i)患者之间预后效果的指示;(ii)靶基因表达的一致性;(iii)外部数据集中外显子-靶标关联的保留;(iv)GBM 中效应分子异常的重现;(v)靶基因的功能富集;(vi)效应物和靶标之间的共同引用。与 GBM 的已知分子异常(如染色体 7 扩增、染色体 10 缺失、EGFR 和 NF1 突变)相关的模块通过了大多数验证测试。此外,与报道较少的分子异常相关的几个模块(如染色体 11 CNV、CD40、PLXNB1 和 GSTM1 甲基化以及 mir-21 表达)也通过了外部信息的验证。特别是,由染色体 11 CNV 构成的反式作用效应模块和由染色体 10 CNV 构成的顺式作用效应模块与脑肿瘤的生存时间表现出强烈的负相关和正相关。通过将关联模块的信息与基于转录或甲基化水平建立的 GBM 亚类对齐,我们发现每个亚类都具有多个并发的分子异常。此外,来自 16 个关联模块的联合分子特征具有预测能力,不能用 CpG 岛甲基化表型的强生物标志物来解释。功能和生存分析表明,免疫/炎症反应和上皮-间充质转化是最重要的预后决定过程之一。最后,我们证明了某些分子异常仅在 GBM 中反复出现,但在非 GBM 神经胶质瘤细胞中相对较少。这些结果证明了癌症基因组综合分析的实用性,并提供了 GBM 中驱动突变事件的可测试特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7a3/3799430/5a3f4271e725/gkt656f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验