Suppr超能文献

基于多滞回 Tone-Entropy 的心脏自主神经病变风险分层。

Risk stratification of cardiac autonomic neuropathy based on multi-lag Tone-Entropy.

机构信息

Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia.

出版信息

Med Biol Eng Comput. 2013 May;51(5):537-46. doi: 10.1007/s11517-012-1022-5. Epub 2013 Jan 24.

Abstract

Cardiac autonomic neuropathy (CAN) is an irreversible condition affecting the autonomic nervous system, which leads to abnormal functioning of the visceral organs and affects critical body functions such as blood pressure, heart rate and kidney filtration. This study presents multi-lag Tone-Entropy (T-E) analysis of heart rate variability (HRV) at multiple lags as a screening tool for CAN. A total of 41 ECG recordings were acquired from diabetic subjects with definite CAN (CAN+) and without CAN (CAN-) and analyzed. Tone and entropy values of each patient were calculated for different beat sequence lengths (len: 50-900) and lags (m: 1-8). The CAN- group was found to have a lower mean tone value compared to that of CAN+ group for all m and len, whereas the mean entropy value was higher in CAN- than that in CAN+ group. Leave-one-out (LOO) cross-validation tests using a quadratic discriminant (QD) classifier were applied to investigate the performance of multi-lag T-E features. We obtained 100 % accuracy for tone and entropy with len = 250 and m = {2, 3} settings, which is better than the performance of T-E technique based on lag m = 1. The results demonstrate the usefulness of multi-lag T-E analysis over single lag analysis in CAN diagnosis for risk stratification and highlight the change in autonomic nervous system modulation of the heart rate associated with cardiac autonomic neuropathy.

摘要

心脏自主神经病变 (CAN) 是一种影响自主神经系统的不可逆病症,导致内脏器官功能异常,并影响血压、心率和肾脏过滤等关键身体功能。本研究提出了多时滞 Tone-Entropy(T-E)分析心率变异性(HRV)作为 CAN 的筛查工具。共采集了 41 份来自确诊为 CAN(CAN+)和无 CAN(CAN-)的糖尿病患者的心电图记录,并进行了分析。为不同的心跳序列长度(len:50-900)和时滞(m:1-8)计算了每位患者的 Tone 和熵值。CAN- 组的平均 Tone 值明显低于 CAN+ 组,而 CAN- 组的平均熵值高于 CAN+ 组。使用二次判别(QD)分类器进行的留一法(LOO)交叉验证测试,用于研究多时滞 T-E 特征的性能。我们在 len = 250 和 m = {2, 3} 设置下获得了 100%的 Tone 和熵准确率,优于基于 m = 1 的 T-E 技术的性能。结果表明,多时滞 T-E 分析在 CAN 诊断中的风险分层中比单时滞分析更有用,并强调了与心脏自主神经病变相关的心率自主神经系统调节变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验