Suppr超能文献

用于抗噪声心率和心率变异性测量的光谱-时间心电图分析

Spectro-Temporal Electrocardiogram Analysis for Noise-Robust Heart Rate and Heart Rate Variability Measurement.

作者信息

Tobon Diana P, Jayaraman Srinivasan, Falk Tiago H

机构信息

INRS-EMTUniversité du Québec.

出版信息

IEEE J Transl Eng Health Med. 2017 Dec 4;5:1900611. doi: 10.1109/JTEHM.2017.2767603. eCollection 2017.

Abstract

The last few years has seen a proliferation of wearable electrocardiogram (ECG) devices in the market with applications in fitness tracking, patient monitoring, athletic performance assessment, stress and fatigue detection, and biometrics, to name a few. The majority of these applications rely on the computation of the heart rate (HR) and the so-called heart rate variability (HRV) index via time-, frequency-, or non-linear-domain approaches. Wearable/portable devices, however, are highly susceptible to artifacts, particularly those resultant from movement. These artifacts can hamper HR/HRV measurement, thus pose a serious threat to cardiac monitoring applications. While current solutions rely on ECG enhancement as a pre-processing step prior to HR/HRV calculation, existing artifact removal algorithms still perform poorly under extremely noisy scenarios. To overcome this limitation, we take an alternate approach and propose the use of a spectro-temporal ECG signal representation that we show separates cardiac components from artifacts. More specifically, by quantifying the rate-of-change of ECG spectral components over time, we show that heart rate estimates can be reliably obtained even in extremely noisy signals, thus bypassing the need for ECG enhancement. With such HR measurements in hands, we then propose a new noise-robust HRV index termed MD-HRV (modulation-domain HRV) computed as the standard deviation of the obtained HR values. Experiments with synthetic ECG signals corrupted at various different signal-to-noise levels, as well as recorded noisy signals show the proposed measure outperforming several HRV benchmark parameters computed post wavelet-based enhancement. These findings suggest that the proposed HR measures and derived MD-HRV metric are well-suited for ambulant cardiac monitoring applications, particularly those involving intense movement (e.g., elite athletic training).

摘要

在过去几年中,可穿戴心电图(ECG)设备在市场上大量涌现,应用于健身追踪、患者监测、运动表现评估、压力和疲劳检测以及生物识别等领域。这些应用大多依赖于通过时域、频域或非线性域方法来计算心率(HR)和所谓的心率变异性(HRV)指数。然而,可穿戴/便携式设备极易受到伪迹的影响,尤其是由运动产生的伪迹。这些伪迹会妨碍HR/HRV测量,从而对心脏监测应用构成严重威胁。虽然目前的解决方案依赖于在计算HR/HRV之前将ECG增强作为预处理步骤,但现有的伪迹去除算法在极端噪声场景下仍然表现不佳。为了克服这一限制,我们采用了另一种方法,提出使用一种频谱-时间ECG信号表示,我们证明这种表示可以将心脏成分与伪迹分离。更具体地说,通过量化ECG频谱成分随时间的变化率,我们表明即使在极端噪声信号中也能可靠地获得心率估计值,从而无需进行ECG增强。有了这样的HR测量结果,我们随后提出了一种新的抗噪声HRV指数,称为MD-HRV(调制域HRV),计算方法是所获得HR值的标准差。对在各种不同信噪比水平下被破坏的合成ECG信号以及记录的噪声信号进行的实验表明,所提出的测量方法优于基于小波增强后计算的几个HRV基准参数。这些发现表明,所提出的HR测量方法和导出的MD-HRV指标非常适合于动态心脏监测应用,特别是那些涉及剧烈运动(如精英运动训练)的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验