Department of Neuroscience, Karolinska Institutet, Stockholm 17177, Sweden.
J Neurosci. 2013 Jan 23;33(4):1678-83. doi: 10.1523/JNEUROSCI.3572-12.2013.
The striatal microcircuitry consists of a vast majority of projection neurons, the medium spiny neurons (MSNs), and a small yet diverse population of interneurons. To understand how activity is orchestrated within the striatum, it is essential to unravel the functional connectivity between the different neuronal types. Fast-spiking (FS) interneurons provide feedforward inhibition to both direct and indirect pathway MSNs and are important in sculpting their output to downstream basal ganglia nuclei. FS interneurons are also interconnected with each other via electrical and chemical synapses; however, whether and how they inhibit other striatal interneuron types remains unknown. In this study we combined multineuron whole-cell recordings with optogenetics to determine the target selectivity of feedforward inhibition by striatal FS interneurons. Using transgenic and viral approaches we directed expression of channelrhodopsin 2 (ChR2) to FS interneurons to study their connectivity within the mouse striatal microcircuit. Optogenetic stimulation of ChR2-expressing FS interneurons generated strong and reliable GABA(A)-dependent synaptic inputs in MSNs. In sharp contrast, simultaneously recorded neighboring cholinergic interneurons did not receive any synaptic inputs from photostimulated FS cells, and a minority of low-threshold spiking (LTS) interneurons responded weakly. We further tested the synaptic connectivity between FS and LTS interneurons using paired recordings, which showed only sparse connectivity. Our results show that striatal FS interneurons form a feedforward inhibitory circuit that is target selective, inhibiting projection neurons while avoiding cholinergic interneurons and sparsely contacting LTS interneurons, thus supporting independent modulation of MSN activity by the different types of striatal interneurons.
纹状体的微电路由绝大多数投射神经元(中型棘突神经元,MSNs)和一小部分但多样化的中间神经元组成。为了了解活动在纹状体内部是如何协调的,必须揭示不同神经元类型之间的功能连接。快速放电(FS)中间神经元对直接和间接通路 MSNs 提供前馈抑制,并且在塑造它们到下游基底神经节核的输出方面很重要。FS 中间神经元也通过电和化学突触相互连接;然而,它们是否以及如何抑制其他纹状体中间神经元类型仍不清楚。在这项研究中,我们结合多神经元全细胞记录和光遗传学来确定纹状体 FS 中间神经元的前馈抑制的靶标选择性。使用转基因和病毒方法,我们将通道视紫红质 2(ChR2)的表达定向到 FS 中间神经元,以研究它们在小鼠纹状体微电路中的连接。ChR2 表达的 FS 中间神经元的光遗传学刺激在 MSNs 中产生强烈而可靠的 GABA(A)依赖性突触输入。与此形成鲜明对比的是,同时记录的邻近胆碱能中间神经元没有从光刺激的 FS 细胞接收任何突触输入,并且少数低阈值放电(LTS)中间神经元反应较弱。我们进一步使用成对记录测试了 FS 和 LTS 中间神经元之间的突触连接,结果表明只有稀疏的连接。我们的结果表明,纹状体 FS 中间神经元形成了一个前馈抑制回路,该回路具有靶标选择性,抑制投射神经元,同时避免胆碱能中间神经元并稀疏地接触 LTS 中间神经元,从而支持不同类型的纹状体中间神经元对 MSN 活动的独立调节。