Morozov V G, Davydov N V, Davydov V A
Department of Physics, Moscow Institute of Radioengineering, Electronics and Automation, Vernadsky Prospect 78, 117454 Moscow, Russia.
J Biol Phys. 1999 Jun;25(2-3):87-100. doi: 10.1023/A:1005131729982.
We study theoretical and numerical propagation of autowave fronts in excitable two-variable (activator-inhibitor) systems with anisotropic diffusion. A general curvature-velocity relation is derived for the case that the inhibitor diffusion is neglected. This relation predicts the break of an activation front when the front curvature exceeds a critical value, which is corroborated by computer simulations of a particular reaction-diffusion model. Some qualitative effects associated with the inhibitor diffusion are studied numerically. It is found that the critical value of curvature decreases with an increase in the inhibitor diffusion coefficient. The core of a spiral wave increases in size and turns through an angle which depends on the inhibitor diffusion coefficient. PACS Numbers: 05.50. +q, 05.70. Ln., 82.40. -g, 87.10. +e.
我们研究了具有各向异性扩散的可激发双变量(激活剂-抑制剂)系统中自波前的理论和数值传播。对于忽略抑制剂扩散的情况,推导了一般的曲率-速度关系。该关系预测,当前曲率超过临界值时,激活前沿会发生破裂,这在一个特定反应扩散模型的计算机模拟中得到了证实。对与抑制剂扩散相关的一些定性效应进行了数值研究。发现曲率的临界值随抑制剂扩散系数的增加而降低。螺旋波的核心尺寸增大,并转过一个取决于抑制剂扩散系数的角度。物理分类号:05.50. +q,05.70. Ln.,82.40. -g,87.10. +e。