Suppr超能文献

噬菌体T4溶菌酶的一种热稳定二硫键突变体的结构表明,在柔性区域构建的交联并不会增加折叠蛋白的刚性。

Structure of a thermostable disulfide-bridge mutant of phage T4 lysozyme shows that an engineered cross-link in a flexible region does not increase the rigidity of the folded protein.

作者信息

Pjura P E, Matsumura M, Wozniak J A, Matthews B W

机构信息

Institute of Molecular Biology and Department of Physics, University of Oregon, Eugene 97403.

出版信息

Biochemistry. 1990 Mar 13;29(10):2592-8. doi: 10.1021/bi00462a023.

Abstract

A disulfide bond introduced between amino acid positions 9 and 164 in phage T4 lysozyme has been shown to significantly increase the stability of the enzyme toward thermal denaturation [Matsumura, M., Becktel, W.J., Levitt, M., & Matthews, B. W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6562-6566]. To elucidate the structural features of the engineered disulfide, the crystal structure of the disulfide mutant has been determined at 1.8-A resolution. Residue 9 lies in the N-terminal alpha-helix, while residue 164 is located at the extreme C terminus of T4 lysozyme, which is the most mobile part of the molecule. The refined structure shows that the formation of the disulfide bond is accompanied by relatively large (approximately 2.5 A) localized shifts in C-terminal main-chain atoms. Comparison of the geometry of the engineered disulfide with those of naturally observed disulfides in proteins shows that the engineered bridge adopts a left-handed spiral conformation with a typical set of dihedral angles and C alpha-C alpha distance. The geometry of the engineered disulfide suggests that it is slightly more strained than the disulfide of oxidized dithiothreitol but that the strain is within the range observed in naturally occurring disulfides. The wild-type and cross-linked lysozymes have very similar overall crystallographic temperature factors, indicating that the introduction of the disulfide bond does not impose rigidity on the folded protein structure. In particular, residues 162-164 retain high mobility in the mutant structure, consistent with the idea that stabilization of the protein is due to the effect of the disulfide cross-link on the unfolded rather than the folded state.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

噬菌体T4溶菌酶中氨基酸位置9和164之间引入的二硫键已被证明能显著提高该酶对热变性的稳定性[松村,M.,贝克特尔,W.J.,莱维特,M.,& 马修斯,B.W.(1989年)《美国国家科学院院刊》86,6562 - 6566]。为阐明工程化二硫键的结构特征,已在1.8埃分辨率下测定了二硫键突变体的晶体结构。残基9位于N端α螺旋中,而残基164位于T4溶菌酶的极端C端,这是分子中最易移动的部分。优化后的结构表明,二硫键的形成伴随着C端主链原子相对较大(约2.5埃)的局部位移。将工程化二硫键的几何结构与蛋白质中天然存在的二硫键的几何结构进行比较表明,工程化桥采用左手螺旋构象,具有一组典型的二面角和Cα - Cα距离。工程化二硫键的几何结构表明,它比氧化型二硫苏糖醇的二硫键略微更具张力,但这种张力在天然存在的二硫键所观察到的范围内。野生型和交联溶菌酶具有非常相似的整体晶体学温度因子,表明二硫键的引入并未给折叠的蛋白质结构带来刚性。特别是,残基162 - 164在突变体结构中保持高移动性,这与蛋白质稳定性是由于二硫键交联对未折叠而非折叠状态的影响这一观点一致。(摘要截短于250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验