Suppr超能文献

含有工程化二硫键的人碳酸酐酶II热稳定和酸稳定变体的结构与催化特性

Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond.

作者信息

Boone Christopher D, Habibzadegan Andrew, Tu Chingkuang, Silverman David N, McKenna Robert

机构信息

Department of Biochemistry and Molecular Biology, University of Florida, PO Box 100245, Gainesville, FL 32610, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2013 Aug;69(Pt 8):1414-22. doi: 10.1107/S0907444913008743. Epub 2013 Jul 13.

Abstract

The carbonic anhydrases (CAs) are a family of mostly zinc metalloenzymes that catalyze the reversible hydration of CO2 to bicarbonate and a proton. Recently, there has been industrial interest in utilizing CAs as biocatalysts for carbon sequestration and biofuel production. The conditions used in these processes, however, result in high temperatures and acidic pH. This unfavorable environment results in rapid destabilization and loss of catalytic activity in CAs, ultimately resulting in cost-inefficient high-maintenance operation of the system. In order to negate these detrimental industrial conditions, cysteines at residues 23 (Ala23Cys) and 203 (Leu203Cys) were engineered into a wild-type variant of human CA II (HCAII) containing the mutation Cys206Ser. The X-ray crystallographic structure of the disulfide-containing HCAII (dsHCAII) was solved to 1.77 Å resolution and revealed that successful oxidation of the cysteine bond was achieved while also retaining desirable active-site geometry. Kinetic studies utilizing the measurement of (18)O-labeled CO2 by mass spectrometry revealed that dsHCAII retained high catalytic efficiency, and differential scanning calorimetry showed acid stability and thermal stability that was enhanced by up to 14 K compared with native HCAII. Together, these studies have shown that dsHCAII has properties that could be used in an industrial setting to help to lower costs and improve the overall reaction efficiency.

摘要

碳酸酐酶(CAs)是一类主要的锌金属酶家族,可催化二氧化碳可逆水合形成碳酸氢根和质子。最近,将碳酸酐酶用作碳封存和生物燃料生产的生物催化剂引起了工业界的兴趣。然而,这些过程中使用的条件会导致高温和酸性pH值。这种不利环境会导致碳酸酐酶迅速失稳并失去催化活性,最终导致系统维护成本高且效率低下。为了消除这些不利的工业条件,将残基23(Ala23Cys)和203(Leu203Cys)处的半胱氨酸改造到含有Cys206Ser突变的人CA II(HCAII)野生型变体中。含二硫键的HCAII(dsHCAII)的X射线晶体结构解析到1.77 Å分辨率,结果表明半胱氨酸键成功氧化,同时还保留了理想的活性位点几何结构。利用质谱法测量(18)O标记的二氧化碳进行的动力学研究表明,dsHCAII保留了高催化效率,差示扫描量热法显示其酸稳定性和热稳定性与天然HCAII相比提高了多达14 K。总之,这些研究表明dsHCAII具有可用于工业环境的特性,有助于降低成本并提高整体反应效率。

相似文献

9
Structural study of X-ray induced activation of carbonic anhydrase.X射线诱导碳酸酐酶激活的结构研究
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10609-13. doi: 10.1073/pnas.0904184106. Epub 2009 Jun 11.

引用本文的文献

5
The Structure of Carbonic Anhydrase IX Is Adapted for Low-pH Catalysis.碳酸酐酶IX的结构适用于低pH催化。
Biochemistry. 2016 Aug 23;55(33):4642-53. doi: 10.1021/acs.biochem.6b00243. Epub 2016 Aug 5.

本文引用的文献

2
Structural annotation of human carbonic anhydrases.人类碳酸酐酶的结构注释。
J Enzyme Inhib Med Chem. 2013 Apr;28(2):267-77. doi: 10.3109/14756366.2012.737323. Epub 2012 Nov 9.
5
Biotechnology for the acceleration of carbon dioxide capture and sequestration.生物技术促进二氧化碳的捕集和封存。
Curr Opin Biotechnol. 2011 Dec;22(6):818-23. doi: 10.1016/j.copbio.2011.06.006. Epub 2011 Jul 5.
9
MolProbity: all-atom structure validation for macromolecular crystallography.MolProbity:用于大分子晶体学的全原子结构验证
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验