Suppr超能文献

多种感染与毒力进化。

Multiple infections and the evolution of virulence.

机构信息

Laboratoire MIVEGEC (UMR CNRS 5290, UR IRD 224, UM1, UM2), Montpellier, France.

出版信息

Ecol Lett. 2013 Apr;16(4):556-67. doi: 10.1111/ele.12076. Epub 2013 Jan 24.

Abstract

Infections that consist of multiple parasite strains or species are common in the wild and are a major public health concern. Theory suggests that these infections have a key influence on the evolution of infectious diseases and, more specifically, on virulence evolution. However, we still lack an overall vision of the empirical support for these predictions. We argue that within-host interactions between parasites largely determine how virulence evolves and that experimental data support model predictions. Then, we explore the main limitation of the experimental study of such 'mixed infections', which is that it draws conclusions on evolutionary outcomes from studies conducted at the individual level. We also discuss differences between coinfections caused by different strains of the same species or by different species. Overall, we argue that it is possible to make sense out of the complexity inherent to multiple infections and that experimental evolution settings may provide the best opportunity to further our understanding of virulence evolution.

摘要

在野外,由多种寄生虫株或物种引起的感染很常见,这也是一个主要的公共卫生关注点。理论表明,这些感染对传染病的进化,尤其是对毒力进化有重要影响。然而,我们仍然缺乏对这些预测的经验支持的总体认识。我们认为,寄生虫之间的体内相互作用在很大程度上决定了毒力如何进化,而实验数据支持模型预测。然后,我们探讨了研究此类“混合感染”的主要实验限制,即它从个体水平的研究中得出关于进化结果的结论。我们还讨论了由同一物种的不同菌株或不同物种引起的共感染之间的差异。总的来说,我们认为,可以理解多种感染所固有的复杂性,并且实验进化设置可能为进一步了解毒力进化提供最佳机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验