Suppr超能文献

基于跨环境的菌株频率数据及上下文依赖的相互入侵性推断成对相互作用。

Inference of Pairwise Interactions from Strain Frequency Data Across Settings and Context-Dependent Mutual Invasibilities.

作者信息

Le Thi Minh Thao, Madec Sten, Gjini Erida

机构信息

Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic.

Institut Denis Poisson, University of Tours, Tours, France.

出版信息

Bull Math Biol. 2025 May 21;87(6):82. doi: 10.1007/s11538-025-01450-0.

Abstract

We propose a method to estimate pairwise strain interactions from population-level frequencies across different endemic settings. We apply the framework of replicator dynamics, derived from a multi-strain SIS model with co-colonization, to extract from 5 datasets the fundamental backbone of strain interactions. In our replicator, each pairwise invasion fitness explicitly arises from local environmental context and trait variations between strains. We adopt the simplest formulation for multi-strain coexistence, where context is encoded in basic reproduction number and mean global susceptibility to co-colonization k, and trait variations capture pairwise deviations from k. We integrate Streptococcus pneumoniae serotype frequencies and serotype identities collected from 5 environments: epidemiological surveys in Denmark, Nepal, Iran, Brazil and Mozambique, and mechanistically link their distributions. Our results have twofold implications. First, we offer a new proof-of-concept in the inference of multi-species interactions based on cross-sectional data. We also discuss 2 key aspects of the method: the site ordering for sequential fitting, and stability constraints on the dynamics. Secondly, we effectively estimate at high-resolution more than 70% of the pneumococcus serotype interaction matrix in co-colonization, allowing for further projections and hypotheses testing. We show that, in these bacteria, both within- and between- serotype interaction coefficients' distribution emerge to be unimodal, their difference in mean broadly reflecting stability assumptions on serotype coexistence. This framework enables further model calibration to global data: cross-sectional across sites, or longitudinal in one site over time, - and should allow a more robust and integrated investigation of intervention effects in such biodiverse ecosystems.

摘要

我们提出了一种方法,用于根据不同流行环境下的人群水平频率来估计菌株间的相互作用。我们应用复制者动力学框架,该框架源自具有共同定殖的多菌株SIS模型,从5个数据集中提取菌株相互作用的基本主干。在我们的复制者模型中,每个菌株对的入侵适应性明确地源于局部环境背景和菌株之间的性状变异。我们采用了多菌株共存的最简单公式,其中背景编码在基本繁殖数和对共同定殖的平均总体易感性k中,性状变异捕获与k的菌株对偏差。我们整合了从丹麦、尼泊尔、伊朗、巴西和莫桑比克这5个环境中收集的肺炎链球菌血清型频率和血清型身份,并从机制上关联它们的分布。我们的结果有两方面的意义。首先,我们为基于横断面数据推断多物种相互作用提供了一个新的概念验证。我们还讨论了该方法的两个关键方面:顺序拟合的位点排序以及动力学的稳定性约束。其次,我们在高分辨率下有效地估计了共同定殖中超过70%的肺炎球菌血清型相互作用矩阵,从而能够进行进一步的预测和假设检验。我们表明,在这些细菌中,血清型内和血清型间相互作用系数的分布均呈现单峰,它们在均值上的差异大致反映了血清型共存的稳定性假设。这个框架能够进一步将模型校准到全球数据:跨位点的横断面数据,或一个位点随时间的纵向数据,并且应该允许对这种生物多样性生态系统中的干预效果进行更稳健和综合的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc45/12095429/452b762a1a17/11538_2025_1450_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验