Suppr超能文献

基于图元的测度适用于生物网络比较。

Graphlet-based measures are suitable for biological network comparison.

机构信息

Department of Computer Science, University of California, Irvine, CA 92697-3435, USA.

出版信息

Bioinformatics. 2013 Feb 15;29(4):483-91. doi: 10.1093/bioinformatics/bts729. Epub 2013 Jan 23.

Abstract

MOTIVATION

Large amounts of biological network data exist for many species. Analogous to sequence comparison, network comparison aims to provide biological insight. Graphlet-based methods are proving to be useful in this respect. Recently some doubt has arisen concerning the applicability of graphlet-based measures to low edge density networks-in particular that the methods are 'unstable'-and further that no existing network model matches the structure found in real biological networks.

RESULTS

We demonstrate that it is the model networks themselves that are 'unstable' at low edge density and that graphlet-based measures correctly reflect this instability. Furthermore, while model network topology is unstable at low edge density, biological network topology is stable. In particular, one must distinguish between average density and local density. While model networks of low average edge densities also have low local edge density, that is not the case with protein-protein interaction (PPI) networks: real PPI networks have low average edge density, but high local edge densities, and hence, they (and thus graphlet-based measures) are stable on these networks. Finally, we use a recently devised non-parametric statistical test to demonstrate that PPI networks of many species are well-fit by several models not previously tested. In addition, we model several viral PPI networks for the first time and demonstrate an exceptionally good fit between the data and theoretical models.

摘要

动机

许多物种都存在大量的生物网络数据。类似于序列比较,网络比较旨在提供生物学见解。基于图元的方法在这方面被证明是有用的。最近,人们对基于图元的度量方法在低边缘密度网络中的适用性产生了一些怀疑——特别是这些方法是“不稳定的”,而且没有现有的网络模型与实际生物网络中的结构相匹配。

结果

我们证明了正是模型网络本身在低边缘密度下是“不稳定的”,而基于图元的度量方法正确地反映了这种不稳定性。此外,虽然低边缘密度的模型网络拓扑结构不稳定,但生物网络拓扑结构是稳定的。特别是,人们必须区分平均密度和局部密度。虽然低平均边缘密度的模型网络也具有低局部边缘密度,但蛋白质-蛋白质相互作用 (PPI) 网络并非如此:真实的 PPI 网络具有低平均边缘密度,但具有高局部边缘密度,因此它们(以及基于图元的度量方法)在这些网络上是稳定的。最后,我们使用最近设计的非参数统计检验来证明,许多物种的 PPI 网络都可以很好地拟合以前未测试过的几种模型。此外,我们首次对几种病毒的 PPI 网络进行建模,并证明数据与理论模型之间非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验