Suppr超能文献

阈行为如何影响子图在网络比较中的应用。

How threshold behaviour affects the use of subgraphs for network comparison.

机构信息

Department of Statistics, University of Oxford, Oxford, UK.

出版信息

Bioinformatics. 2010 Sep 15;26(18):i611-7. doi: 10.1093/bioinformatics/btq386.

Abstract

MOTIVATION

A wealth of protein-protein interaction (PPI) data has recently become available. These data are organized as PPI networks and an efficient and biologically meaningful method to compare such PPI networks is needed. As a first step, we would like to compare observed networks to established network models, under the aspect of small subgraph counts, as these are conjectured to relate to functional modules in the PPI network. We employ the software tool GraphCrunch with the Graphlet Degree Distribution Agreement (GDDA) score to examine the use of such counts for network comparison.

RESULTS

Our results show that the GDDA score has a pronounced dependency on the number of edges and vertices of the networks being considered. This should be taken into account when testing the fit of models. We provide a method for assessing the statistical significance of the fit between random graph models and biological networks based on non-parametric tests. Using this method we examine the fit of Erdös-Rényi (ER), ER with fixed degree distribution and geometric (3D) models to PPI networks. Under these rigorous tests none of these models fit to the PPI networks. The GDDA score is not stable in the region of graph density relevant to current PPI networks. We hypothesize that this score instability is due to the networks under consideration having a graph density in the threshold region for the appearance of small subgraphs. This is true for both geometric (3D) and ER random graph models. Such threshold behaviour may be linked to the robustness and efficiency properties of the PPI networks.

摘要

动机

最近获得了大量蛋白质-蛋白质相互作用 (PPI) 数据。这些数据被组织为 PPI 网络,需要一种高效且具有生物学意义的方法来比较这些 PPI 网络。作为第一步,我们希望根据小子图计数来比较观察到的网络与既定的网络模型,因为这些被推测与 PPI 网络中的功能模块有关。我们使用 GraphCrunch 软件工具和图节度分布协议 (GDDA) 分数来检查这些计数在网络比较中的应用。

结果

我们的结果表明,GDDA 分数对所考虑网络的边数和顶点数有明显的依赖性。在测试模型拟合度时,应考虑到这一点。我们提供了一种基于非参数检验的方法来评估随机图模型和生物网络之间拟合的统计显著性。使用这种方法,我们检查了 Erdös-Rényi (ER)、具有固定度分布的 ER 和几何 (3D) 模型与 PPI 网络的拟合情况。在这些严格的测试下,这些模型都不适合 PPI 网络。GDDA 分数在与当前 PPI 网络相关的图密度区域不稳定。我们假设,这种分数不稳定性是由于所考虑的网络具有小子图出现的阈值区域的图密度。这对于几何 (3D) 和 ER 随机图模型都是如此。这种阈值行为可能与 PPI 网络的鲁棒性和效率特性有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acd0/2935432/ca711b5bc2e2/btq386f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验