Maharaj Sridevi, Qian Taotao, Ohiba Zarin, Hayes Wayne
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):16-26. doi: 10.1109/TCBB.2020.3017374. Epub 2021 Feb 3.
The structure of protein-protein interaction (PPI) networks has been studied for over a decade. Many theoretical models have been proposed to model PPI network structure, but continuing noise and incompleteness in these networks make conclusions about their structure difficult. Using newer, larger networks from Sept. 2018 BioGRID and Jan. 2019 IID, we show the joint distribution of degree products and common neighbors has a greater impact on PPI edge connectivity than their individual distributions, and introduce two new models (CN and STICKY-CN) for PPI networks employing these features. Since graphlet-based measures are believed to be among the most discerning and sensitive network comparison tools available, we assess their overall global and local fits to PPI networks using Graphlet Kernel (GK). We fit 10 theoretical models to nine BioGRID networks and twelve Integrated Interactive Database (IID) networks and find: (1) STICKY and STICKY-CN are the overall globally best fitting models according to GK, (2) Hyperbolic Geometric Graph model is a better fit than any STICKY-based model on 4 species, (3) though STICKY-CN provides a better local fit than the STICKY model, the CN model provides the greatest local fit over most species. We conclude that the inclusion of CN into STICKY-CN makes it the best overall fit for PPI networks as it is a good fit locally and globally.
蛋白质-蛋白质相互作用(PPI)网络的结构已经被研究了十多年。人们提出了许多理论模型来模拟PPI网络结构,但这些网络中持续存在的噪声和不完整性使得关于其结构的结论难以得出。利用2018年9月BioGRID和2019年1月IID更新的、更大的网络,我们表明度积和共同邻居的联合分布对PPI边连通性的影响比它们的个体分布更大,并引入了两种利用这些特征的PPI网络新模型(CN和STICKY-CN)。由于基于图元的度量被认为是最具辨别力和敏感性的可用网络比较工具之一,我们使用图元核(GK)评估它们对PPI网络的整体全局和局部拟合情况。我们将10种理论模型应用于9个BioGRID网络和12个综合交互数据库(IID)网络,发现:(1)根据GK,STICKY和STICKY-CN是整体全局最佳拟合模型;(2)双曲几何图模型在4个物种上比任何基于STICKY的模型拟合得更好;(3)尽管STICKY-CN比STICKY模型提供了更好的局部拟合,但CN模型在大多数物种上提供了最大的局部拟合。我们得出结论,将CN纳入STICKY-CN使其成为PPI网络的最佳整体拟合,因为它在局部和全局上都拟合得很好。