Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain.
Photochem Photobiol Sci. 2013 Aug;12(8):1303-9. doi: 10.1039/c2pp25389e.
The nature of electronically excited states in DNA is analyzed in detail using a combination of quantum mechanical (QM) semiempirical calculations and molecular dynamics (MD). For this purpose, we consider homogeneous π stacks extracted from the MD trajectory of a poly(A)·poly(T) oligomer. The environment is accounted for within the QM/MM scheme. The effects of structural fluctuations on exciton delocalization and photoinduced charge separation are explored using the quantitative analysis of the electron density in the excited states. We distinguish the effects generated by the vibronic interactions within nucleobases and by the environment of the π stack. While in ideal B-DNA stacks (A-T)n singlet excited states are spread over all intrastrand nucleobases, the average exciton length is ~0.75n, thermal fluctuations decrease considerably the extent of delocalization. The QM/MD model predicts that the excitons in (A-T)n stacks are spread over 3 bases (for n = 4 and 6, the average exciton length is found to be 2.6 ± 0.3 and 2.8 ± 0.3, respectively). We show that the main factor reducing the exciton length is the vibronic interactions within nucleobases whereas fluctuations of the π stack environment play a relatively minor role. The oscillator strength of electronic transitions from the ground state to charge-separated states Ak(+)Ak±1(-) and Tk(+)Tk±1(-) is found to be strong enough to populate directly these states by UV absorption at E = 5.0-5.3 eV. In contrast, the direct formation of interstrand charge transfer states Ai(+)Tj(-) is predicted to be unlikely.
使用量子力学(QM)半经验计算和分子动力学(MD)的组合,详细分析了 DNA 中电子激发态的性质。为此,我们考虑了从 MD 轨迹中提取的均匀π堆叠聚(A)·聚(T)低聚物。环境在QM/MM 方案中得到了说明。通过定量分析激发态中的电子密度,研究了结构波动对激子离域和光致电荷分离的影响。我们区分了由核碱基内的振子相互作用和π堆叠环境产生的影响。虽然在理想的 B-DNA 堆叠(A-T)n 中,单重激发态分布在所有链内核碱基上,但平均激子长度约为 0.75n,热波动大大降低了离域程度。QM/MD 模型预测,(A-T)n 堆叠中的激子分布在 3 个碱基上(对于 n = 4 和 6,平均激子长度分别为 2.6 ± 0.3 和 2.8 ± 0.3)。我们表明,降低激子长度的主要因素是核碱基内的振子相互作用,而π堆叠环境的波动则起着相对较小的作用。从基态到电荷分离态 Ak(+)Ak±1(-)和 Tk(+)Tk±1(-)的电子跃迁的振子强度被发现足够强,足以通过在 E = 5.0-5.3 eV 的 UV 吸收直接将这些态激发。相比之下,预测直接形成链间电荷转移态 Ai(+)Tj(-)是不太可能的。