Suppr超能文献

Fluorescein angiography of the newborn rat. Implications in oxygen-induced retinopathy.

作者信息

Larrazabal L I, Penn J S

机构信息

Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock 72205.

出版信息

Invest Ophthalmol Vis Sci. 1990 May;31(5):810-8.

PMID:2335449
Abstract

The current technique was developed to characterize the morphologic changes in the retinas of oxygen-reared rats, as an animal model of retinopathy of prematurity. Past studies have used ink perfusion to observe the retinal vasculature, but this method is static and requires the sacrifice of the subject. Fluorescein angiography, however, is dynamic and relatively noninvasive, and allows the survival of the animal for further study. The fundus camera cannot be used because the source of light that is focused in an annulus is too large for the pupil size of a young (approximately 14-day-old) rat. To overcome this, a Nikon inverted microscope (Diaphot-TMD) was used. Using the proper exciting and barrier filters for fluorescene, a photographic sequence was made by rapidly focusing to the plane of the retinal vessels. To our knowledge, similar photographs have not been previously published. This technique was used in newborn pigmented ratlings that were 1) exposed to 80% oxygen for the first 14 days of life; 2) exposed to 80% oxygen for the first 21 days of life; or 3) exposed for the first 14 days followed by 7 days in room air. Age-matched controls were raised simultaneously in room air and evaluated with the same technique. Differences were observed between treatments in the amount of retinal capillary loss, and in the tortuosity and diameter of the major retinal vessels. The hyaloid system also varied between treatment groups. Oxygen-exposed rats showed a persistence of the hyaloid vessels that was particularly prominent in the group returned to room air before analysis. Comparisons are made to past results obtained with other histologic techniques.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验