Bioprocess Development Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, Japan.
Appl Environ Microbiol. 2013 Apr;79(7):2201-8. doi: 10.1128/AEM.03596-12. Epub 2013 Jan 25.
L-Homophenylalanine (L-Hph) is a useful chiral building block for synthesis of several drugs, including angiotensin-converting enzyme inhibitors and the novel proteasome inhibitor carfilzomib. While the chemoenzymatic route of synthesis is fully developed, we investigated microbial production of L-Hph to explore the possibility of a more efficient and sustainable approach to L-Hph production. We hypothesized that L-Hph is synthesized from L-Phe via a mechanism homologous to 3-methyl-2-oxobutanoic acid conversion to 4-methyl-2-oxopentanoic acid during leucine biosynthesis. Based on bioinformatics analysis, we found three putative homophenylalanine biosynthesis genes, hphA (Npun_F2464), hphB (Npun_F2457), and hphCD (Npun_F2458), in the cyanobacterium Nostoc punctiforme PCC73102, located around the gene cluster responsible for anabaenopeptin biosynthesis. We constructed Escherichia coli strains harboring hphABCD-expressing plasmids and achieved the fermentative production of L-Hph from L-Phe. To our knowledge, this is the first identification of the genes responsible for homophenylalanine synthesis in any organism. Furthermore, to improve the low conversion efficiency of the initial strain, we optimized the expression of hphA, hphB, and hphCD, which increased the yield to ∼630 mg/liter. The L-Hph biosynthesis and L-Leu biosynthesis genes from E. coli were also compared. This analysis revealed that HphB has comparatively relaxed substrate specificity and can perform the function of LeuB, but HphA and HphCD show tight substrate specificity and cannot complement the LeuA and LeuC/LeuD functions, and vice versa. Finally, the range of substrate tolerance of the L-Hph-producing strain was examined, which showed that m-fluorophenylalanine, o-fluorophenylalanine, and L-tyrosine were accepted as substrates and that the corresponding homoamino acids were generated.
L-高苯丙氨酸(L-Hph)是合成几种药物的有用手性砌块,包括血管紧张素转换酶抑制剂和新型蛋白酶体抑制剂卡非佐米。虽然化学酶法合成路线已经完全开发,但我们研究了微生物生产 L-Hph,以探索更有效和可持续的 L-Hph 生产方法。我们假设 L-Hph 是通过与亮氨酸生物合成过程中 3-甲基-2-氧代丁酸转化为 4-甲基-2-氧代戊酸同源的机制从 L-苯丙氨酸合成的。基于生物信息学分析,我们在蓝藻 N. punctiforme PCC73102 中发现了三个推定的高苯丙氨酸生物合成基因,hphA(Npun_F2464)、hphB(Npun_F2457)和 hphCD(Npun_F2458),位于负责 anabaenopeptin 生物合成的基因簇周围。我们构建了携带 hphABCD 表达质粒的大肠杆菌菌株,并实现了从 L-苯丙氨酸发酵生产 L-Hph。据我们所知,这是首次在任何生物体中鉴定出负责高苯丙氨酸合成的基因。此外,为了提高初始菌株的低转化率,我们优化了 hphA、hphB 和 hphCD 的表达,将产量提高到约 630mg/L。还比较了大肠杆菌中 L-Hph 生物合成基因和 L-Leu 生物合成基因。该分析表明,HphB 具有相对宽松的底物特异性,可以执行 LeuB 的功能,但 HphA 和 HphCD 显示出严格的底物特异性,不能补充 LeuA 和 LeuC/LeuD 功能,反之亦然。最后,检查了 L-Hph 产生菌株的底物耐受性范围,结果表明 m-氟苯丙氨酸、邻氟苯丙氨酸和 L-酪氨酸被接受为底物,并生成相应的同型氨基酸。