Suppr超能文献

在致死性流感感染中,受损的呼吸功能的特征是Ⅰ型肺泡上皮细胞耗竭超过阈值水平。

Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels.

机构信息

Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2013 Apr 1;304(7):L481-8. doi: 10.1152/ajplung.00343.2012. Epub 2013 Jan 25.

Abstract

During influenza virus infection, it is unclear how much alveolar cell loss can be tolerated before the host succumbs to the disease. We sought to define relevant correlates of disease severity in the mouse influenza model, hypothesizing that a susceptibility threshold exists for alveolar epithelial cell loss. We compared lung pathology, virus spread, alveolar epithelial cell depletion, arterial blood oxygenation, physiological responses measured by unrestrained plethysmography, and oxygen consumption and carbon dioxide production by gas analysis in mice at intervals after infection with virus strains and doses that cause mild (x31) or severe (PR/8) influenza. Both mild and severe infections showed similar degrees of lung damage and virus dissemination until day 6 after inoculation but diverged in survival outcomes from day 9. Day 6 PR/8-infected mice had normal respiratory and gas exchange functions with 10% type I cell loss. However, day 10 PR/8-infected mice had 40% type I cell loss with a concomitant drastic decreases in tidal and minute volumes, Vo(2), Vco(2), and arterial blood oxygenation, compared with a maximum 3% type I cell loss for x31 on day 10 when they recovered body weight and respiratory functions. Alterations in breaths per minute, expiratory time, and metabolic rate were observed in both infections. A threshold for maintenance of proper respiratory function appears to be crossed once 10% of alveolar type I cells are lost. These data indicate that lethality in influenza virus infection is a matter of degree rather than quality.

摘要

在流感病毒感染期间,尚不清楚在宿主因疾病而死亡之前,肺泡细胞损失多少可以被容忍。我们试图在小鼠流感模型中定义疾病严重程度的相关指标,假设存在肺泡上皮细胞丢失的易感性阈值。我们比较了感染病毒株和剂量后,轻度(x31)或重度(PR/8)流感感染后间隔时间的小鼠的肺部病理、病毒传播、肺泡上皮细胞耗竭、动脉血氧饱和度、通过非约束性 plethysmography 测量的生理反应以及通过气体分析测量的耗氧量和二氧化碳生成。轻度和重度感染均显示出类似程度的肺部损伤和病毒传播,直到接种后第 6 天,但从第 9 天开始,存活结果出现分歧。第 6 天感染 PR/8 的小鼠具有正常的呼吸和气体交换功能,I 型细胞损失 10%。然而,第 10 天感染 PR/8 的小鼠的 I 型细胞损失了 40%,伴随着潮气量和分钟量、Vo(2)、Vco(2)和动脉血氧饱和度的急剧下降,相比之下,x31 在第 10 天恢复体重和呼吸功能时,最大 I 型细胞损失为 3%。在两种感染中均观察到呼吸频率、呼气时间和代谢率的改变。一旦 10%的肺泡 I 型细胞丢失,似乎就越过了维持适当呼吸功能的阈值。这些数据表明,流感病毒感染的致死性是一个程度问题,而不是质量问题。

相似文献

1
Compromised respiratory function in lethal influenza infection is characterized by the depletion of type I alveolar epithelial cells beyond threshold levels.
Am J Physiol Lung Cell Mol Physiol. 2013 Apr 1;304(7):L481-8. doi: 10.1152/ajplung.00343.2012. Epub 2013 Jan 25.
2
MCP-1 antibody treatment enhances damage and impedes repair of the alveolar epithelium in influenza pneumonitis.
Am J Respir Cell Mol Biol. 2010 Jun;42(6):732-43. doi: 10.1165/rcmb.2008-0423OC. Epub 2009 Jul 17.
3
Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus.
Respir Res. 2012 Jun 6;13(1):43. doi: 10.1186/1465-9921-13-43.
5
Tissue factor deficiency increases alveolar hemorrhage and death in influenza A virus-infected mice.
J Thromb Haemost. 2016 Jun;14(6):1238-48. doi: 10.1111/jth.13307. Epub 2016 Apr 5.
6
Local lung hypoxia determines epithelial fate decisions during alveolar regeneration.
Nat Cell Biol. 2017 Aug;19(8):904-914. doi: 10.1038/ncb3580. Epub 2017 Jul 24.
7
Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair.
PLoS Pathog. 2016 Jun 20;12(6):e1005544. doi: 10.1371/journal.ppat.1005544. eCollection 2016 Jun.
8
Influenza virus inhibits ENaC and lung fluid clearance.
Am J Physiol Lung Cell Mol Physiol. 2004 Aug;287(2):L366-73. doi: 10.1152/ajplung.00011.2004. Epub 2004 Apr 30.

引用本文的文献

1
Lung cell fates during influenza.
Cell Res. 2025 Aug 18. doi: 10.1038/s41422-025-01163-y.
4
ZBP1-driven cell death in severe influenza.
Trends Microbiol. 2025 May;33(5):521-532. doi: 10.1016/j.tim.2024.12.008. Epub 2025 Jan 13.
5
Evaluation of intranasal TLR2/6 agonist INNA-051: safety, tolerability and proof of pharmacology.
ERJ Open Res. 2024 Dec 9;10(6). doi: 10.1183/23120541.00199-2024. eCollection 2024 Nov.
6
Blocking cell death limits lung damage and inflammation from influenza.
Nature. 2024 Apr;628(8009):726-727. doi: 10.1038/d41586-024-00910-2.
10
Capillary Blood Gas in Children Hospitalized Due to Influenza Predicts the Risk of Lower Respiratory Tract Infection.
Diagnostics (Basel). 2022 Oct 5;12(10):2412. doi: 10.3390/diagnostics12102412.

本文引用的文献

1
Influenza A viruses target type II pneumocytes in the human lung.
J Infect Dis. 2012 Dec 1;206(11):1685-94. doi: 10.1093/infdis/jis455. Epub 2012 Jul 24.
2
Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus.
Respir Res. 2012 Jun 6;13(1):43. doi: 10.1186/1465-9921-13-43.
3
Critical role of natural killer cells in lung immunopathology during influenza infection in mice.
J Infect Dis. 2012 Jul 15;206(2):167-77. doi: 10.1093/infdis/jis340. Epub 2012 May 4.
4
Disease tolerance as a defense strategy.
Science. 2012 Feb 24;335(6071):936-41. doi: 10.1126/science.1214935.
6
Use of plethysmography in assessing the efficacy of antivirals in a mouse model of pandemic influenza A virus.
Antiviral Res. 2011 Nov;92(2):228-36. doi: 10.1016/j.antiviral.2011.08.011. Epub 2011 Aug 17.
7
Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis.
Am J Pathol. 2011 Jul;179(1):199-210. doi: 10.1016/j.ajpath.2011.03.013. Epub 2011 May 7.
9
Comparison of the pathology caused by H1N1, H5N1, and H3N2 influenza viruses.
Arch Med Res. 2009 Nov;40(8):655-61. doi: 10.1016/j.arcmed.2009.10.001. Epub 2010 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验