Parsons Xuejun H
San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA ; Xcelthera, San Diego, CA 92109, USA.
J Stem Cell Res Ther. 2012 Jul 13;2(3). doi: 10.4172/2157-7633.1000124.
Realizing the potential of human embryonic stem cells (hESCs) has been hindered by the inefficiency and instability of generating desired cell types from pluripotent cells through multi-lineage differentiation. We recently reported that pluripotent hESCs maintained under a defined platform can be uniformly converted into a cardiac or neural lineage by small molecule induction, which enables lineage-specific differentiation direct from the pluripotent state of hESCs and opens the door to investigate human embryonic development using in vitro cellular model systems. To identify mechanisms of small molecule induced lineage-specification of pluripotent hESCs, in this study, we compared the expression and intracellular distribution patterns of a set of cardinal chromatin modifiers in pluripotent hESCs, nicotinamide (NAM)-induced cardiomesodermal cells, and retinoic acid (RA)-induced neuroectodermal cells. Further, genome-scale profiling of microRNA (miRNA) differential expression patterns was used to monitor the regulatory networks of the entire genome and identify the development-initiating miRNAs in hESC cardiac and neural lineage-specification. We found that NAM induced nuclear translocation of NAD-dependent histone deacetylase SIRT1 and global chromatin silencing, while RA induced silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family to high levels. Genome-scale miRNA profiling indentified that a unique set of pluripotence-associated miRNAs was down-regulated, while novel sets of distinct cardiac- and neural-driving miRNAs were up-regulated upon the induction of lineage-specification direct from the pluripotent state of hESCs. These findings suggest that a predominant epigenetic mechanism via SIRT1-mediated global chromatin silencing governs NAM-induced hESC cardiac fate determination, while a predominant genetic mechanism via silencing of pluripotence-associated hsa-miR-302 family and drastic up-regulation of neuroectodermal Hox miRNA hsa-miR-10 family governs RA-induced hESC neural fate determination. This study provides critical insight into the earliest events in human embryogenesis as well as offers means for small molecule-mediated direct control and modulation of hESC pluripotent fate when deriving clinically-relevant lineages for regenerative therapies.
通过多谱系分化从多能细胞中生成所需细胞类型的效率低下和不稳定性阻碍了人类胚胎干细胞(hESC)潜能的实现。我们最近报道,在特定平台下维持的多能hESC可以通过小分子诱导统一转化为心脏或神经谱系,这使得能够直接从hESC的多能状态进行谱系特异性分化,并为使用体外细胞模型系统研究人类胚胎发育打开了大门。为了确定小分子诱导多能hESC谱系特异性的机制,在本研究中,我们比较了一组主要染色质修饰因子在多能hESC、烟酰胺(NAM)诱导的心脏中胚层细胞和视黄酸(RA)诱导的神经外胚层细胞中的表达和细胞内分布模式。此外,利用全基因组规模的微小RNA(miRNA)差异表达模式分析来监测整个基因组的调控网络,并鉴定hESC心脏和神经谱系特异性中启动发育的miRNA。我们发现,NAM诱导了依赖NAD的组蛋白脱乙酰酶SIRT1的核转位和整体染色质沉默,而RA诱导了多能性相关的hsa-miR-302家族的沉默以及神经外胚层Hox miRNA hsa-miR-10家族的急剧上调至高表达水平。全基因组规模的miRNA分析确定,在直接从hESC的多能状态诱导谱系特异性时,一组独特的多能性相关miRNA被下调,而新的不同的心脏和神经驱动miRNA被上调。这些发现表明,通过SIRT1介导的整体染色质沉默的主要表观遗传机制控制着NAM诱导的hESC心脏命运决定,而通过沉默多能性相关的hsa-miR-302家族和急剧上调神经外胚层Hox miRNA hsa-miR-10家族的主要遗传机制控制着RA诱导的hESC神经命运决定。这项研究为人类胚胎发生的最早事件提供了关键见解,并为在为再生疗法衍生临床相关谱系时小分子介导的hESC多能命运的直接控制和调节提供了手段。