Parsons Xuejun H
San Diego Regenerative Medicine Institute, San Diego, CA 92109, USA. ; Xcelthera, San Diego, CA 92109, USA.
Br Biotechnol J. 2013 Oct 1;3(4):424-457. doi: 10.9734/BBJ/2013/4309#sthash.6D8Rulbv.dpuf.
To date, the lack of a clinically-suitable source of engraftable human stem/progenitor cells with adequate neurogenic potential has been the major setback in developing safe and effective cell-based therapies for regenerating the damaged or lost CNS structure and circuitry in a wide range of neurological disorders. Similarly, the lack of a clinically-suitable human cardiomyocyte source with adequate myocardium regenerative potential has been the major setback in regenerating the damaged human heart. Given the limited capacity of the CNS and heart for self-repair, there is a large unmet healthcare need to develop stem cell therapies to provide optimal regeneration and reconstruction treatment options to restore normal tissues and function. Derivation of human embryonic stem cells (hESCs) provides a powerful model system to investigate molecular controls in human embryogenesis as well as an unlimited source to generate the diversity of human somatic cell types for regenerative medicine. However, realizing the developmental and therapeutic potential of hESC derivatives has been hindered by the inefficiency and instability of generating clinically-relevant functional cells from pluripotent cells through conventional uncontrollable and incomplete multi-lineage differentiation. Recent advances and breakthroughs in hESC research have overcome some major obstacles in bringing hESC therapy derivatives towards clinical applications, including establishing defined culture systems for derivation and maintenance of clinical-grade pluripotent hESCs and lineage-specific differentiation of pluripotent hESCs by small molecule induction. Retinoic acid was identified as sufficient to induce the specification of neuroectoderm direct from the pluripotent state of hESCs and trigger a cascade of neuronal lineage-specific progression to human neuronal progenitors and neurons of the developing CNS in high efficiency, purity, and neuronal lineage specificity by promoting nuclear translocation of the neuronal specific transcription factor Nurr-1. Similarly, nicotinamide was rendered sufficient to induce the specification of cardiomesoderm direct from the pluripotent state of hESCs by promoting the expression of the earliest cardiac-specific transcription factor Csx/Nkx2.5 and triggering progression to cardiac precursors and beating cardiomyocytes with high efficiency. This technology breakthrough enables direct conversion of pluripotent hESCs into a large supply of high purity neuronal cells or heart muscle cells with adequate capacity to regenerate CNS neurons and contractile heart muscles for developing safe and effective stem cell therapies. Transforming pluripotent hESCs into fate-restricted therapy derivatives dramatically increases the clinical efficacy of graft-dependent repair and safety of hESC-derived cellular products. Such milestone advances and medical innovations in hESC research allow generation of a large supply of clinical-grade hESC therapy derivatives targeting for major health problems, bringing cell-based regenerative medicine to a turning point.
迄今为止,缺乏具有足够神经发生潜能且临床上适用的可移植人类干细胞/祖细胞来源,一直是开发安全有效的基于细胞的疗法以在多种神经疾病中再生受损或缺失的中枢神经系统(CNS)结构和神经回路的主要障碍。同样,缺乏具有足够心肌再生潜能且临床上适用的人类心肌细胞来源,一直是人类受损心脏再生的主要障碍。鉴于中枢神经系统和心脏的自我修复能力有限,迫切需要开发干细胞疗法,以提供最佳的再生和重建治疗方案,来恢复正常组织和功能。人类胚胎干细胞(hESC)的衍生提供了一个强大的模型系统,用于研究人类胚胎发育中的分子调控,同时也是为再生医学生成多种人类体细胞类型的无限来源。然而,通过传统的不可控且不完全的多谱系分化从多能细胞生成临床上相关的功能细胞的低效性和不稳定性,阻碍了hESC衍生物的发育和治疗潜能的实现。hESC研究的最新进展和突破克服了将hESC治疗衍生物推向临床应用的一些主要障碍,包括建立用于临床级多能hESC的衍生和维持的明确培养系统,以及通过小分子诱导实现多能hESC的谱系特异性分化。已确定视黄酸足以直接从hESC的多能状态诱导神经外胚层的特化,并通过促进神经元特异性转录因子Nurr-1的核转位,高效、高纯度且具有神经元谱系特异性地触发一系列神经元谱系特异性进展,生成发育中的中枢神经系统的人类神经元祖细胞和神经元。同样,已确定烟酰胺足以通过促进最早的心脏特异性转录因子Csx/Nkx2.5的表达,直接从hESC的多能状态诱导心脏中胚层的特化,并高效触发向心脏前体细胞和跳动心肌细胞的进展。这一技术突破使得多能hESC能够直接转化为大量高纯度的神经元细胞或心肌细胞,这些细胞具有足够的能力再生中枢神经系统神经元和收缩性心肌,从而开发安全有效的干细胞疗法。将多能hESC转化为命运受限的治疗衍生物,显著提高了移植依赖性修复的临床疗效以及hESC衍生细胞产品的安全性。hESC研究中的这些里程碑式进展和医学创新,使得能够生成大量针对主要健康问题的临床级hESC治疗衍生物,将基于细胞的再生医学带入了一个转折点。