Suppr超能文献

ATP 合酶:已知的、不确定的和未知的。

The ATP synthase: the understood, the uncertain and the unknown.

机构信息

MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.

出版信息

Biochem Soc Trans. 2013 Feb 1;41(1):1-16. doi: 10.1042/BST20110773.

Abstract

The ATP synthases are multiprotein complexes found in the energy-transducing membranes of bacteria, chloroplasts and mitochondria. They employ a transmembrane protonmotive force, Δp, as a source of energy to drive a mechanical rotary mechanism that leads to the chemical synthesis of ATP from ADP and Pi. Their overall architecture, organization and mechanistic principles are mostly well established, but other features are less well understood. For example, ATP synthases from bacteria, mitochondria and chloroplasts differ in the mechanisms of regulation of their activity, and the molecular bases of these different mechanisms and their physiological roles are only just beginning to emerge. Another crucial feature lacking a molecular description is how rotation driven by Δp is generated, and how rotation transmits energy into the catalytic sites of the enzyme to produce the stepping action during rotation. One surprising and incompletely explained deduction based on the symmetries of c-rings in the rotor of the enzyme is that the amount of energy required by the ATP synthase to make an ATP molecule does not have a universal value. ATP synthases from multicellular organisms require the least energy, whereas the energy required to make an ATP molecule in unicellular organisms and chloroplasts is higher, and a range of values has been calculated. Finally, evidence is growing for other roles of ATP synthases in the inner membranes of mitochondria. Here the enzymes form supermolecular complexes, possibly with specific lipids, and these complexes probably contribute to, or even determine, the formation of the cristae.

摘要

ATP 合酶是存在于细菌、叶绿体和线粒体的能量转换膜中的多蛋白复合物。它们利用跨膜质子动力势(Δp)作为能量来源,驱动机械旋转机制,从而将 ADP 和 Pi 化学合成 ATP。它们的整体结构、组织和机械原理大多已经确立,但其他特征则不太为人所知。例如,细菌、线粒体和叶绿体的 ATP 合酶在其活性调节机制方面存在差异,这些不同机制的分子基础及其生理作用才刚刚开始显现。另一个关键特征是缺乏分子描述的是,如何由 Δp 驱动的旋转是如何产生的,以及旋转如何将能量传递到酶的催化位点,从而在旋转过程中产生步进作用。一个基于酶转子 c 环对称性的令人惊讶且尚未完全解释的推断是,ATP 合酶制造一个 ATP 分子所需的能量没有一个通用的值。多细胞生物的 ATP 合酶需要的能量最少,而单细胞生物和叶绿体制造一个 ATP 分子所需的能量更高,并且已经计算出了一系列的值。最后,越来越多的证据表明,线粒体的内膜中 ATP 合酶还具有其他作用。在这里,酶形成超分子复合物,可能与特定的脂质结合,这些复合物可能有助于甚至决定嵴的形成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验