Department of Cognitive, Linguistic and Psychological Sciences, Brown Institute for Brain Science, Brown University, USA.
Psychol Rev. 2013 Jan;120(1):190-229. doi: 10.1037/a0030852.
Learning and executive functions such as task-switching share common neural substrates, notably prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for cognitive control. We investigate this question from 3 complementary angles. First, we develop a new context-task-set (C-TS) model, inspired by nonparametric Bayesian methods, specifying how the learner might infer hidden structure (hierarchical rules) and decide to reuse or create new structure in novel situations. Second, we develop a neurobiologically explicit network model to assess mechanisms of such structured learning in hierarchical frontal cortex and basal ganglia circuits. We systematically explore the link between these modeling levels across task demands. We find that the network provides an approximate implementation of high-level C-TS computations, with specific neural mechanisms modulating distinct C-TS parameters. Third, this synergism yields predictions about the nature of human optimal and suboptimal choices and response times during learning and task-switching. In particular, the models suggest that participants spontaneously build task-set structure into a learning problem when not cued to do so, which predicts positive and negative transfer in subsequent generalization tests. We provide experimental evidence for these predictions and show that C-TS provides a good quantitative fit to human sequences of choices. These findings implicate a strong tendency to interactively engage cognitive control and learning, resulting in structured abstract representations that afford generalization opportunities and, thus, potentially long-term rather than short-term optimality.
学习和执行功能,如任务转换,共享共同的神经基质,特别是前额叶皮层和基底神经节。理解它们如何相互作用需要研究认知控制如何促进学习,但也需要研究学习如何提供(潜在隐藏的)结构,如抽象规则或任务集,这些结构是认知控制所必需的。我们从 3 个互补的角度来研究这个问题。首先,我们开发了一种新的上下文-任务集(C-TS)模型,该模型受到非参数贝叶斯方法的启发,指定了学习者如何推断隐藏结构(分层规则),并决定在新情况下重复使用或创建新结构。其次,我们开发了一个神经生物学上明确的网络模型,以评估分层额皮质和基底神经节电路中这种结构化学习的机制。我们系统地探索了这些建模水平在任务需求上的联系。我们发现,该网络提供了高级 C-TS 计算的近似实现,特定的神经机制调节了不同的 C-TS 参数。第三,这种协同作用产生了关于人类在学习和任务转换过程中最优和次优选择以及反应时间的本质的预测。特别是,这些模型表明,参与者在没有被提示的情况下,会自发地将任务集结构构建到学习问题中,这预测了随后的泛化测试中的正迁移和负迁移。我们提供了这些预测的实验证据,并表明 C-TS 对人类的选择序列提供了很好的定量拟合。这些发现表明,存在一种强烈的倾向,即互动式地参与认知控制和学习,从而产生结构化的抽象表示,提供泛化机会,从而有可能实现长期而不是短期的最优性。