Suppr超能文献

习得认知灵活性向新刺激和任务集的转移。

Transfer of Learned Cognitive Flexibility to Novel Stimuli and Task Sets.

机构信息

Center for Cognitive Neuroscience, Duke University.

Department of Biostatistics and Bioinformatics, Duke University School of Medicine.

出版信息

Psychol Sci. 2023 Apr;34(4):435-454. doi: 10.1177/09567976221141854. Epub 2023 Jan 24.

Abstract

Adaptive behavior requires learning about the structure of one's environment to derive optimal action policies, and previous studies have documented transfer of such structural knowledge to bias choices in new environments. Here, we asked whether people could also acquire and transfer more abstract knowledge across different task environments, specifically expectations about cognitive control demands. Over three experiments, participants (Amazon Mechanical Turk workers; = ~80 adults per group) performed a probabilistic card-sorting task in environments of either a low or high volatility of task rule changes (requiring low or high cognitive flexibility, respectively) before transitioning to a medium-volatility environment. Using reinforcement-learning modeling, we consistently found that previous exposure to high task rule volatilities led to faster adaptation to rule changes in the subsequent transfer phase. These transfers of expectations about cognitive flexibility demands were both task independent (Experiment 2) and stimulus independent (Experiment 3), thus demonstrating the formation and generalization of environmental structure knowledge to guide cognitive control.

摘要

适应行为需要了解环境的结构,以便得出最优的行动策略,先前的研究已经记录了这种结构知识在新环境中的偏差选择中的转移。在这里,我们想知道人们是否也可以在不同的任务环境中获得和转移更抽象的知识,特别是关于认知控制需求的期望。在三个实验中,参与者(亚马逊土耳其机器人工人;每组约 80 名成年人)在低或高任务规则变化波动性的环境中进行了概率卡片分类任务(分别需要低或高认知灵活性),然后过渡到中波动性环境。使用强化学习建模,我们一致发现,先前接触高任务规则波动性会导致在后续转移阶段更快地适应规则变化。这些对认知灵活性需求的期望转移既不受任务影响(实验 2),也不受刺激影响(实验 3),因此证明了环境结构知识的形成和泛化可以指导认知控制。

相似文献

1

引用本文的文献

4
Principles of cognitive control over task focus and task switching.对任务焦点和任务切换进行认知控制的原则。
Nat Rev Psychol. 2023 Nov;2(11):702-714. doi: 10.1038/s44159-023-00234-4. Epub 2023 Sep 27.
7
Learning environment-specific learning rates.学习环境特定的学习率。
PLoS Comput Biol. 2024 Mar 22;20(3):e1011978. doi: 10.1371/journal.pcbi.1011978. eCollection 2024 Mar.

本文引用的文献

2
Aversive motivation and cognitive control.厌恶动机与认知控制。
Neurosci Biobehav Rev. 2022 Feb;133:104493. doi: 10.1016/j.neubiorev.2021.12.016. Epub 2021 Dec 12.
3
Adaptive learning is structure learning in time.自适应学习是时间上的结构学习。
Neurosci Biobehav Rev. 2021 Sep;128:270-281. doi: 10.1016/j.neubiorev.2021.06.024. Epub 2021 Jun 16.
5
The stability flexibility tradeoff and the dark side of detail.稳定性-灵活性权衡与细节的阴暗面。
Cogn Affect Behav Neurosci. 2021 Jun;21(3):607-623. doi: 10.3758/s13415-020-00848-8. Epub 2020 Nov 24.
10
Item-specific priming of voluntary task switches.任务特异性启动对自愿任务转换的影响。
J Exp Psychol Hum Percept Perform. 2020 Apr;46(4):434-441. doi: 10.1037/xhp0000725.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验