Center for Cognitive Neuroscience, Duke University.
Department of Biostatistics and Bioinformatics, Duke University School of Medicine.
Psychol Sci. 2023 Apr;34(4):435-454. doi: 10.1177/09567976221141854. Epub 2023 Jan 24.
Adaptive behavior requires learning about the structure of one's environment to derive optimal action policies, and previous studies have documented transfer of such structural knowledge to bias choices in new environments. Here, we asked whether people could also acquire and transfer more abstract knowledge across different task environments, specifically expectations about cognitive control demands. Over three experiments, participants (Amazon Mechanical Turk workers; = ~80 adults per group) performed a probabilistic card-sorting task in environments of either a low or high volatility of task rule changes (requiring low or high cognitive flexibility, respectively) before transitioning to a medium-volatility environment. Using reinforcement-learning modeling, we consistently found that previous exposure to high task rule volatilities led to faster adaptation to rule changes in the subsequent transfer phase. These transfers of expectations about cognitive flexibility demands were both task independent (Experiment 2) and stimulus independent (Experiment 3), thus demonstrating the formation and generalization of environmental structure knowledge to guide cognitive control.
适应行为需要了解环境的结构,以便得出最优的行动策略,先前的研究已经记录了这种结构知识在新环境中的偏差选择中的转移。在这里,我们想知道人们是否也可以在不同的任务环境中获得和转移更抽象的知识,特别是关于认知控制需求的期望。在三个实验中,参与者(亚马逊土耳其机器人工人;每组约 80 名成年人)在低或高任务规则变化波动性的环境中进行了概率卡片分类任务(分别需要低或高认知灵活性),然后过渡到中波动性环境。使用强化学习建模,我们一致发现,先前接触高任务规则波动性会导致在后续转移阶段更快地适应规则变化。这些对认知灵活性需求的期望转移既不受任务影响(实验 2),也不受刺激影响(实验 3),因此证明了环境结构知识的形成和泛化可以指导认知控制。