Department of Physics, University of Alberta, Edmonton, AB Canada.
Prion. 2013 Mar-Apr;7(2):140-6. doi: 10.4161/pri.23303. Epub 2013 Jan 28.
The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially- or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.
朊病毒蛋白 PrP 的结构转换为可传播的错误折叠形式是朊病毒疾病的核心要素,但对于其发生机制仍存在较少共识。从错误折叠的早期阶段(如部分或完全展开的中间体的参与)到感染状态的结构等方面,疾病状态转换的关键方面仍未解决。理解结构转换的部分困难来自于基础能量景观的复杂性。单分子方法为研究朊病毒错误折叠等复杂折叠途径提供了强大的工具,因为它们可以直接观察到罕见和瞬时的事件。我们讨论了最近应用单分子探针研究朊病毒蛋白错误折叠的工作,以及这些工作揭示了 PrP 折叠动力学的哪些方面,这些方面可能是其独特行为的基础。我们还讨论了单分子研究探测稳定聚集体内非天然结构的相互作用,为未来可能有助于识别引发致病转换的微观事件的工作指明了方向。尽管单分子方法研究错误折叠相对较新,但它们在朊病毒科学中具有广阔的前景。