Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA.
J Am Chem Soc. 2013 Feb 20;135(7):2435-8. doi: 10.1021/ja311926r. Epub 2013 Feb 11.
Diamond anvil cell (DAC), synchrotron X-ray diffraction (XRD), and small-angle X-ray scattering (SAXS) techniques are used to probe the composition inside hollow γ-Fe(3)O(4) nanoparticles (NPs). SAXS experiments on 5.2, 13.3, and 13.8 nm hollow-shell γ-Fe(3)O(4) NPs, and 6 nm core/14.8 nm hollow-shell Au/Fe(3)O(4) NPs, reveal the significantly high (higher than solvent) electron density of the void inside the hollow shell. In high-pressure DAC experiments using Ne as pressure-transmitting medium, formation of nanocrystalline Ne inside hollow NPs is not detected by XRD, indicating that the oxide shell is impenetrable. Also, FTIR analysis on solutions of hollow-shell γ-Fe(3)O(4) NPs fragmented upon refluxing shows no evidence of organic molecules from the void inside, excluding the possibility that organic molecules get through the iron oxide shell during synthesis. High-pressure DAC experiments on Au/Fe(3)O(4) core/hollow-shell NPs show good transmittance of the external pressure to the gold core, indicating the presence of the pressure-transmitting medium in the gap between the core and the hollow shell. Overall, our data reveal the presence of most likely small fragments of iron and/or iron oxide in the void of the hollow NPs. The iron oxide shell seems to be non-porous and impenetrable by gases and liquids.
采用金刚石压腔(DAC)、同步加速器 X 射线衍射(XRD)和小角 X 射线散射(SAXS)技术来探测中空γ-Fe(3)O(4)纳米颗粒(NPs)内部的组成。对 5.2、13.3 和 13.8nm 中空壳γ-Fe(3)O(4) NPs 和 6nm 核/14.8nm 中空壳 Au/Fe(3)O(4) NPs 的 SAXS 实验表明,中空壳内部的空穴具有显著较高的(高于溶剂)电子密度。在使用 Ne 作为压力传递介质的高压 DAC 实验中,通过 XRD 未检测到 Ne 纳米晶体在中空 NPs 内部的形成,表明氧化壳是不可渗透的。此外,在回流过程中破碎的中空壳γ-Fe(3)O(4) NPs 溶液的 FTIR 分析没有显示出来自空穴内部的有机分子的证据,排除了有机分子在合成过程中穿过氧化铁壳的可能性。Au/Fe(3)O(4)核/中空壳 NPs 的高压 DAC 实验表明,外部压力很好地传递到金核,表明在核和中空壳之间的间隙中有压力传递介质的存在。总的来说,我们的数据揭示了中空 NPs 空穴中很可能存在少量的铁和/或氧化铁碎片。氧化铁壳似乎是无孔的,气体和液体无法渗透。