Singh Prerna, Mott Derrick M, Maenosono Shinya
School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan).
Chemphyschem. 2013 Oct 7;14(14):3278-83. doi: 10.1002/cphc.201300471. Epub 2013 Aug 2.
Plasmonic Au and magnetic Fe are coupled into uniform Au@Fe core-shell nanoparticles (NPs) to confirm that electron transfer occurred from the Au core to the Fe shell. Au NPs synthesized in aqueous medium are used as seeds and coated with an Fe shell. The resulting Au@Fe NPs are characterized by using various analytical techniques. X-ray photoelectron spectroscopy and superconducting quantum interference device measurements reveal that the Fe shell of the Au@Fe NPs mainly consists of paramagnetic Wüstite with a thin surface oxide layer consisting of maghemite or magnetite. Electron transfer from the Au core to the Fe shell effectively suppresses iron oxidation from Fe(2+) to Fe(3+) near the interface between the Au and the Fe. The charge-transfer-induced electronic modification technique enables us to control the degree of iron oxidation and the resulting magnetic properties.
将等离子体金(Au)和磁性铁(Fe)耦合到均匀的金@铁核壳纳米颗粒(NPs)中,以证实电子从金核转移到铁壳。在水介质中合成的金纳米颗粒用作种子,并包覆铁壳。通过各种分析技术对所得的金@铁纳米颗粒进行表征。X射线光电子能谱和超导量子干涉装置测量表明,金@铁纳米颗粒的铁壳主要由顺磁性的方铁矿组成,表面有一层由磁赤铁矿或磁铁矿构成的薄氧化层。电子从金核转移到铁壳有效地抑制了金和铁界面附近铁从Fe(2+)氧化为Fe(3+)。电荷转移诱导的电子修饰技术使我们能够控制铁的氧化程度以及由此产生的磁性。