London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1E 6BT, UK.
J Phys Condens Matter. 2013 Feb 27;25(8):085402. doi: 10.1088/0953-8984/25/8/085402. Epub 2013 Jan 30.
A combination of state-of-the-art theoretical methods has been used to obtain an atomic-level picture of classical and quantum ordering of protons in cold high-pressure solid hydrogen. We focus mostly on phases II and III of hydrogen, exploring the effects of quantum nuclear motion on certain features of these phases (through a number of ab initio path integral molecular dynamics (PIMD) simulations at particular points on the phase diagram). We also examine the importance of van der Waals forces in this system by performing calculations using the optB88-vdW density functional, which accounts for non-local correlations. Our calculations reveal that the transition between phases I and II is strongly quantum in nature, resulting from a competition between anisotropic inter-molecular interactions that restrict molecular rotation and thermal plus quantum fluctuations of the nuclear positions that facilitate it. The transition from phase II to III is more classical because quantum nuclear motion plays only a secondary role and the transition is determined primarily by the underlying potential energy surface. A structure of P2(1)/c symmetry with 24 atoms in the primitive unit cell is found to be stable when anharmonic quantum nuclear vibrational motion is included at finite temperatures using the PIMD method. This structure gives a good account of the infra-red and Raman vibron frequencies of phase II. We find additional support for a C2/c structure as a strong candidate for phase III, since it remains transparent up to 300 GPa, even when quantum nuclear effects are included. Finally, we find that accounting for van der Waals forces improves the agreement between experiment and theory for the parts of the phase diagram considered, when compared to previous work which employed the widely-used Perdew-Burke-Ernzerhof exchange-correlation functional.
我们结合了最先进的理论方法,以获得冷高压固态氢中质子经典和量子有序的原子级图像。我们主要关注氢的相 II 和相 III,探索量子核运动对这些相的某些特征的影响(通过在相图上的特定点进行多次从头算路径积分分子动力学(PIMD)模拟)。我们还通过使用 optB88-vdW 密度泛函(该泛函考虑了非局部相关性)进行计算,研究了这个系统中范德华力的重要性。我们的计算表明,相 I 和相 II 之间的转变在本质上是强烈量子的,这是由于限制分子旋转的各向异性分子间相互作用与促进旋转的核位置的热和量子涨落之间的竞争造成的。从相 II 到相 III 的转变更为经典,因为量子核运动仅起次要作用,并且转变主要由潜在的势能面决定。当使用 PIMD 方法在有限温度下包含非谐量子核振动运动时,发现在原始单胞中有 24 个原子的 P2(1)/c 对称结构是稳定的。该结构很好地解释了相 II 的红外和拉曼声子频率。我们发现,对于所考虑的相图部分,与之前使用广泛使用的 Perdew-Burke-Ernzerhof 交换相关泛函的工作相比,当考虑范德华力时,C2/c 结构作为相 III 的强候选结构得到了额外的支持,因为即使包含量子核效应,它也保持透明直至 300 GPa。最后,我们发现与之前的工作相比,当考虑范德华力时,对于所考虑的相图部分,实验与理论之间的一致性得到了改善,之前的工作使用了广泛使用的 Perdew-Burke-Ernzerhof 交换相关泛函。