Department of Physics, Sapienza University of Rome, Rome, Italy.
Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
J Chem Phys. 2018 Mar 14;148(10):102314. doi: 10.1063/1.5001387.
We performed simulations for solid molecular hydrogen at high pressures (250 GPa ≤ P ≤ 500 GPa) along two isotherms at T = 200 K (phase III) and at T = 414 K (phase IV). At T = 200 K, we considered likely candidates for phase III, the C2c and Cmca12 structures, while at T = 414 K in phase IV, we studied the Pc48 structure. We employed both Coupled Electron-Ion Monte Carlo (CEIMC) and Path Integral Molecular Dynamics (PIMD). The latter is based on Density Functional Theory (DFT) with the van der Waals approximation (vdW-DF). The comparison between the two methods allows us to address the question of the accuracy of the exchange-correlation approximation of DFT for thermal and quantum protons without recurring to perturbation theories. In general, we find that atomic and molecular fluctuations in PIMD are larger than in CEIMC which suggests that the potential energy surface from vdW-DF is less structured than the one from quantum Monte Carlo. We find qualitatively different behaviors for systems prepared in the C2c structure for increasing pressure. Within PIMD, the C2c structure is dynamically partially stable for P ≤ 250 GPa only: it retains the symmetry of the molecular centers but not the molecular orientation; at intermediate pressures, it develops layered structures like Pbcn or Ibam and transforms to the metallic Cmca-4 structure at P ≥ 450 GPa. Instead, within CEIMC, the C2c structure is found to be dynamically stable at least up to 450 GPa; at increasing pressure, the molecular bond length increases and the nuclear correlation decreases. For the other two structures, the two methods are in qualitative agreement although quantitative differences remain. We discuss various structural properties and the electrical conductivity. We find that these structures become conducting around 350 GPa but the metallic Drude-like behavior is reached only at around 500 GPa, consistent with recent experimental claims.
我们沿着两条等温线(T = 200 K(第三相)和 T = 414 K(第四相))对高压下(250 GPa ≤ P ≤ 500 GPa)的固态分子氢进行了模拟。在 T = 200 K 时,我们考虑了第三相可能的候选物,即 C2c 和 Cmca12 结构,而在 T = 414 K 的第四相中,我们研究了 Pc48 结构。我们同时使用了耦合电子-离子蒙特卡罗(CEIMC)和路径积分分子动力学(PIMD)。后者基于密度泛函理论(DFT),并带有范德华近似(vdW-DF)。两种方法的比较使我们能够解决 DFT 中交换相关近似对热和量子质子准确性的问题,而无需诉诸于微扰理论。总的来说,我们发现 PIMD 中的原子和分子波动比 CEIMC 中的波动更大,这表明 vdW-DF 的势能面比量子蒙特卡罗的势能面结构更简单。我们发现,对于在 C2c 结构中制备的系统,随着压力的增加,行为表现出明显的差异。在 PIMD 中,仅在 P ≤ 250 GPa 时,C2c 结构在动力学上部分稳定:它保留了分子中心的对称性,但不保留分子取向;在中间压力下,它发展出像 Pbcn 或 Ibam 一样的层状结构,并在 P ≥ 450 GPa 时转化为金属 Cmca-4 结构。相反,在 CEIMC 中,C2c 结构被发现至少在 450 GPa 时在动力学上是稳定的;随着压力的增加,分子键长增加,核相关性降低。对于另外两种结构,两种方法在定性上是一致的,尽管存在定量差异。我们讨论了各种结构性质和电导率。我们发现,这些结构在大约 350 GPa 时变得具有导电性,但只有在大约 500 GPa 时才达到金属 Drude 样行为,这与最近的实验结果一致。