Suppr超能文献

酵母细胞中葡萄糖代谢与 D-乳酸生成的关系。

D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae.

机构信息

Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.

出版信息

Yeast. 2013 Feb;30(2):81-91. doi: 10.1002/yea.2942. Epub 2013 Jan 30.

Abstract

Methylglyoxal, a reactive, toxic dicarbonyl, is generated by the spontaneous degradation of glycolytic intermediates. Methylglyoxal can form covalent adducts with cellular macromolecules, potentially disrupting cellular function. We performed experiments using the model organism Saccharomyces cerevisiae, grown in media containing low, moderate and high glucose concentrations, to determine the relationship between glucose consumption and methylglyoxal metabolism. Normal growth experiments and glutathione depletion experiments showed that metabolism of methylglyoxal by log-phase yeast cultured aerobically occurred primarily through the glyoxalase pathway. Growth in high-glucose media resulted in increased generation of the methylglyoxal metabolite D-lactate and overall lower efficiency of glucose utilization as measured by growth rates. Cells grown in high-glucose media maintained higher glucose uptake flux than cells grown in moderate-glucose or low-glucose media. Computational modelling showed that increased glucose consumption may impair catabolism of triose phosphates as a result of an altered NAD⁺:NADH ratio.

摘要

甲基乙二醛是一种具有反应活性和毒性的二羰基化合物,由糖酵解中间产物的自发降解产生。甲基乙二醛可以与细胞内的大分子形成共价加合物,从而潜在地破坏细胞功能。我们使用模式生物酿酒酵母进行实验,在含有低、中、高葡萄糖浓度的培养基中生长,以确定葡萄糖消耗与甲基乙二醛代谢之间的关系。正常生长实验和谷胱甘肽耗竭实验表明,有氧培养的对数期酵母通过醛缩酶途径主要代谢甲基乙二醛。在高葡萄糖培养基中生长会导致甲基乙二醛代谢物 D-乳酸的生成增加,以及葡萄糖利用率的整体降低,这可以通过生长速率来衡量。在高葡萄糖培养基中生长的细胞比在中葡萄糖或低葡萄糖培养基中生长的细胞保持更高的葡萄糖摄取通量。计算模型表明,增加的葡萄糖消耗可能会由于 NAD⁺:NADH 比例的改变而损害三磷酸甘油醛的分解代谢。

相似文献

1
D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae.
Yeast. 2013 Feb;30(2):81-91. doi: 10.1002/yea.2942. Epub 2013 Jan 30.
2
In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae.
FEBS Lett. 2001 Jun 15;499(1-2):41-4. doi: 10.1016/s0014-5793(01)02519-4.
3
Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae.
Antonie Van Leeuwenhoek. 2012 Jun;102(1):163-75. doi: 10.1007/s10482-012-9724-0. Epub 2012 Mar 30.
6
Protein glycation in Saccharomyces cerevisiae. Argpyrimidine formation and methylglyoxal catabolism.
FEBS J. 2005 Sep;272(17):4521-31. doi: 10.1111/j.1742-4658.2005.04872.x.
10
Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins.
FEBS J. 2006 Dec;273(23):5273-87. doi: 10.1111/j.1742-4658.2006.05520.x. Epub 2006 Oct 25.

引用本文的文献

1
Human D-Lactate Dehydrogenase Deficiency: A Case Report in a Young Boy.
JIMD Rep. 2025 Jul 17;66(4):e70039. doi: 10.1002/jmd2.70039. eCollection 2025 Jul.
2
Lactate formation from fructose or C1 compounds in the acetogen Acetobacterium woodii by metabolic engineering.
Appl Microbiol Biotechnol. 2023 Sep;107(17):5491-5502. doi: 10.1007/s00253-023-12637-7. Epub 2023 Jul 7.
3
Parallel Accelerator and Molecular Mass Spectrometry Measurement of Carbon-14-Labeled Analytes.
Methods Mol Biol. 2022;2349:1-10. doi: 10.1007/978-1-0716-1585-0_1.
4
Mitochondrial Retrograde Signaling Contributes to Metabolic Differentiation in Yeast Colonies.
Int J Mol Sci. 2021 May 25;22(11):5597. doi: 10.3390/ijms22115597.
6
Mrr1 regulation of methylglyoxal catabolism and methylglyoxal-induced fluconazole resistance in Candida lusitaniae.
Mol Microbiol. 2021 Jan;115(1):116-130. doi: 10.1111/mmi.14604. Epub 2020 Dec 14.
7
Effect of Cysteine on Methylglyoxal-Induced Renal Damage in Mesangial Cells.
Cells. 2020 Jan 17;9(1):234. doi: 10.3390/cells9010234.
8
TrkAIII signals endoplasmic reticulum stress to the mitochondria in neuroblastoma cells, resulting in glycolytic metabolic adaptation.
Oncotarget. 2017 Dec 22;9(9):8368-8390. doi: 10.18632/oncotarget.23618. eCollection 2018 Feb 2.

本文引用的文献

1
Mitochondrial involvement to methylglyoxal detoxification: D-Lactate/Malate antiporter in Saccharomyces cerevisiae.
Antonie Van Leeuwenhoek. 2012 Jun;102(1):163-75. doi: 10.1007/s10482-012-9724-0. Epub 2012 Mar 30.
2
Glyoxalase system in yeasts: structure, function, and physiology.
Semin Cell Dev Biol. 2011 May;22(3):278-84. doi: 10.1016/j.semcdb.2011.02.002. Epub 2011 Feb 15.
4
Yeast dynamic metabolic flux measurement in nutrient-rich media by HPLC and accelerator mass spectrometry.
Anal Chem. 2010 Dec 1;82(23):9812-7. doi: 10.1021/ac102065f. Epub 2010 Nov 9.
5
Closing the anion gap: contribution of D-lactate to diabetic ketoacidosis.
Clin Chim Acta. 2011 Jan 30;412(3-4):286-91. doi: 10.1016/j.cca.2010.10.020. Epub 2010 Oct 29.
6
The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression.
Biochim Biophys Acta. 2011 Jun;1807(6):568-76. doi: 10.1016/j.bbabio.2010.08.010. Epub 2010 Sep 8.
7
Molecular susceptibility to glycation and its implication in diabetes mellitus and related diseases.
Mol Cell Biochem. 2010 Nov;344(1-2):185-93. doi: 10.1007/s11010-010-0541-3. Epub 2010 Jul 31.
8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验