Lawrence Livermore National Laboratory, Center for Accelerator Mass Spectrometry, 7000 East Avenue P.O. Box 808, L-397 Livermore, California 94551, USA.
Anal Chem. 2010 Dec 1;82(23):9812-7. doi: 10.1021/ac102065f. Epub 2010 Nov 9.
Metabolic flux, the flow of metabolites through networks of enzymes, represents the dynamic productive output of cells. Improved understanding of intracellular metabolic fluxes will enable targeted manipulation of metabolic pathways of medical and industrial importance to a greater degree than is currently possible. Flux balance analysis (FBA) is a constraint-based approach to modeling metabolic fluxes, but its utility is limited by a lack of experimental measurements. Incorporation of experimentally measured fluxes as system constraints will significantly improve the overall accuracy of FBA. We applied a novel, two-tiered approach in the yeast Saccharomyces cerevisiae to measure nutrient consumption rates (extracellular fluxes) and a targeted intracellular flux using a (14)C-labeled precursor with HPLC separation and flux quantitation by accelerator mass spectrometry (AMS). The use of AMS to trace the intracellular fate of (14)C-glutamine allowed the calculation of intracellular metabolic flux through this pathway, with glutathione as the metabolic end point. Measured flux values provided global constraints for the yeast FBA model which reduced model uncertainty by more than 20%, proving the importance of additional constraints in improving the accuracy of model predictions and demonstrating the use of AMS to measure intracellular metabolic fluxes. Our results highlight the need to use intracellular fluxes to constrain the models. We show that inclusion of just one such measurement alone can reduce the average variability of model predicted fluxes by 10%.
代谢通量是指代谢物在酶网络中的流动,代表了细胞的动态生产输出。更深入地了解细胞内代谢通量将使我们能够在更大程度上有针对性地操纵具有医学和工业重要性的代谢途径,这是目前所无法实现的。通量平衡分析(FBA)是一种基于约束的代谢通量建模方法,但由于缺乏实验测量,其应用受到限制。将实验测量的通量作为系统约束条件纳入其中,将显著提高 FBA 的整体准确性。我们在酵母酿酒酵母中应用了一种新颖的两阶段方法来测量营养物质消耗率(细胞外通量)和使用 (14)C 标记前体的靶向细胞内通量,通过高效液相色谱分离和加速器质谱(AMS)通量定量进行。使用 AMS 追踪 (14)C-谷氨酰胺的细胞内命运,我们可以计算通过这条途径的细胞内代谢通量,以谷胱甘肽作为代谢终点。测量的通量值为酵母 FBA 模型提供了全局约束条件,将模型不确定性降低了 20%以上,这证明了在提高模型预测准确性方面增加约束条件的重要性,并展示了使用 AMS 测量细胞内代谢通量的方法。我们的结果强调了需要使用细胞内通量来约束模型。我们表明,仅包含一个这样的测量值就可以将模型预测通量的平均可变性降低 10%。