Laboratory of Molecular Pharmacology of the Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 2013 Mar 8;288(10):7147-57. doi: 10.1074/jbc.M112.414797. Epub 2013 Jan 28.
Intramolecular disulfide bond formation is promoted in oxidizing extracellular and endoplasmic reticulum compartments and often contributes to protein stability and function. DUOX1 and DUOX2 are distinguished from other members of the NOX protein family by the presence of a unique extracellular N-terminal region. These peroxidase-like domains lack the conserved cysteines that confer structural stability to mammalian peroxidases. Sequence-based structure predictions suggest that the thiol groups present are solvent-exposed on a single protein surface and are too distant to support intramolecular disulfide bond formation. To investigate the role of these thiol residues, we introduced four individual cysteine to glycine mutations in the peroxidase-like domains of both human DUOXs and purified the recombinant proteins. The mutations caused little change in the stabilities of the monomeric proteins, supporting the hypothesis that the thiol residues are solvent-exposed and not involved in disulfide bonds that are critical for structural integrity. However, the ability of the isolated hDUOX1 peroxidase-like domain to dimerize was altered, suggesting a role for these cysteines in protein-protein interactions that could facilitate homodimerization of the peroxidase-like domain or, in the full-length protein, heterodimeric interactions with a maturation protein. When full-length hDUOX1 was expressed in HEK293 cells, the mutations resulted in decreased H2O2 production that correlated with a decreased amount of the enzyme localized to the membrane surface rather than with a loss of activity or with a failure to synthesize the mutant proteins. These results support a role for the cysteine residues in intermolecular disulfide bond formation with the DUOX maturation factor DUOXA1.
分子内二硫键的形成在氧化细胞外和内质网隔室中得到促进,并且通常有助于蛋白质的稳定性和功能。DUOX1 和 DUOX2 与其他 NOX 蛋白家族成员的区别在于存在独特的细胞外 N 端区域。这些过氧化物酶样结构域缺乏赋予哺乳动物过氧化物酶结构稳定性的保守半胱氨酸。基于序列的结构预测表明,存在的巯基基团在单个蛋白质表面上暴露于溶剂中,并且彼此之间的距离太远,无法支持分子内二硫键的形成。为了研究这些巯基残基的作用,我们在人 DUOX 的过氧化物酶样结构域中引入了四个单独的半胱氨酸到甘氨酸突变,并纯化了重组蛋白。这些突变对单体蛋白的稳定性几乎没有影响,支持了这样的假设,即巯基残基暴露于溶剂中,并且不参与对于结构完整性至关重要的二硫键。然而,分离的 hDUOX1 过氧化物酶样结构域的二聚化能力发生了改变,这表明这些半胱氨酸在蛋白质-蛋白质相互作用中起作用,这些相互作用可以促进过氧化物酶样结构域的同源二聚化,或者在全长蛋白中与成熟蛋白进行异源二聚化相互作用。当全长 hDUOX1 在 HEK293 细胞中表达时,突变导致 H2O2 产生减少,这与酶定位于膜表面的量减少相关,而不是与活性丧失或突变蛋白的合成失败相关。这些结果支持半胱氨酸残基在与 DUOX 成熟因子 DUOXA1 的分子间二硫键形成中的作用。