Suppr超能文献

肺泡作为吸入亚微米颗粒沉积的流动混合器和流动供给器的同时作用。

The simultaneous role of an alveolus as flow mixer and flow feeder for the deposition of inhaled submicron particles.

作者信息

Henry F S, Haber S, Haberthür D, Filipovic N, Milasinovic D, Schittny J C, Tsuda A

机构信息

Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.

出版信息

J Biomech Eng. 2012 Dec;134(12):121001. doi: 10.1115/1.4007949.

Abstract

In an effort to understand the fate of inhaled submicron particles in the small sacs, or alveoli, comprising the gas-exchange region of the lung, we calculated the flow in three-dimensional (3D) rhythmically expanding models of alveolated ducts. Since convection toward the alveolar walls is a precursor to particle deposition, it was the goal of this paper to investigate the streamline maps' dependence upon alveoli location along the acinar tree. On the alveolar midplane, the recirculating flow pattern exhibited closed streamlines with a stagnation saddle point. Off the midplane we found no closed streamlines but nested, funnel-like, spiral, structures (reminiscent of Russian nesting dolls) that were directed towards the expanding walls in inspiration, and away from the contracting walls in expiration. These nested, funnel-like, structures were surrounded by air that flowed into the cavity from the central channel over inspiration and flowed from the cavity to the central channel over expiration. We also found that fluid particle tracks exhibited similar nested funnel-like spiral structures. We conclude that these unique alveolar flow structures may be of importance in enhancing deposition. In addition, due to inertia, the nested, funnel-like, structures change shape and position slightly during a breathing cycle, resulting in flow mixing. Also, each inspiration feeds a fresh supply of particle-laden air from the central channel to the region surrounding the mixing region. Thus, this combination of flow mixer and flow feeder makes each individual alveolus an effective mixing unit, which is likely to play an important role in determining the overall efficiency of convective mixing in the acinus.

摘要

为了了解吸入的亚微米颗粒在构成肺气体交换区域的小囊(即肺泡)中的命运,我们计算了肺泡管三维(3D)节律性扩张模型中的气流。由于朝向肺泡壁的对流是颗粒沉积的先兆,本文的目的是研究流线图对沿腺泡树的肺泡位置的依赖性。在肺泡中平面上,再循环流型呈现出带有停滞鞍点的封闭流线。在中平面之外,我们没有发现封闭流线,而是发现了嵌套的、漏斗状的螺旋结构(让人联想到俄罗斯套娃),这些结构在吸气时指向扩张的壁,在呼气时背离收缩的壁。这些嵌套的、漏斗状的结构被空气包围,空气在吸气时从中央通道流入腔室,在呼气时从腔室流向中央通道。我们还发现流体颗粒轨迹呈现出类似的嵌套漏斗状螺旋结构。我们得出结论,这些独特的肺泡流动结构可能对增强沉积具有重要意义。此外,由于惯性,嵌套的、漏斗状的结构在呼吸周期中会稍微改变形状和位置,从而导致气流混合。而且,每次吸气都会从中央通道向混合区域周围的区域输送新鲜的含颗粒空气。因此,这种气流混合器和气流输送器的组合使每个肺泡成为一个有效的混合单元,这可能在决定腺泡中对流混合的整体效率方面发挥重要作用。

相似文献

3
Gravitational deposition in a rhythmically expanding and contracting alveolus.
J Appl Physiol (1985). 2003 Aug;95(2):657-71. doi: 10.1152/japplphysiol.00770.2002. Epub 2003 Mar 14.
4
Modeling Airflow and Particle Deposition in a Human Acinar Region.
Comput Math Methods Med. 2019 Jan 14;2019:5952941. doi: 10.1155/2019/5952941. eCollection 2019.
5
Chaotic mixing of alveolated duct flow in rhythmically expanding pulmonary acinus.
J Appl Physiol (1985). 1995 Sep;79(3):1055-63. doi: 10.1152/jappl.1995.79.3.1055.
7
Role of alveolar topology on acinar flows and convective mixing.
J Biomech Eng. 2014 Jun;136(6):061007. doi: 10.1115/1.4027328.
8
Particle dynamics and deposition in true-scale pulmonary acinar models.
Sci Rep. 2015 Sep 11;5:14071. doi: 10.1038/srep14071.
10
Flow in a terminal alveolar sac model with expanding walls using computational fluid dynamics.
Inhal Toxicol. 2010 Jul;22(8):669-78. doi: 10.3109/08958371003749939.

引用本文的文献

1
Microflows in two-generation alveolar cells at an acinar bifurcation.
Biomicrofluidics. 2022 Sep 6;16(5):054101. doi: 10.1063/5.0098302. eCollection 2022 Sep.
2
Recent advances in the understanding of alveolar flow.
Biomicrofluidics. 2022 Apr 13;16(2):021502. doi: 10.1063/5.0084415. eCollection 2022 Mar.
3
Pulmonary acini exhibit complex changes during postnatal rat lung development.
PLoS One. 2021 Nov 8;16(11):e0257349. doi: 10.1371/journal.pone.0257349. eCollection 2021.
4
Modeling Airflow and Particle Deposition in a Human Acinar Region.
Comput Math Methods Med. 2019 Jan 14;2019:5952941. doi: 10.1155/2019/5952941. eCollection 2019.
5
How high resolution 3-dimensional imaging changes our understanding of postnatal lung development.
Histochem Cell Biol. 2018 Dec;150(6):677-691. doi: 10.1007/s00418-018-1749-7. Epub 2018 Nov 2.
6
Development of the lung.
Cell Tissue Res. 2017 Mar;367(3):427-444. doi: 10.1007/s00441-016-2545-0. Epub 2017 Jan 31.
7
A Microfluidic Model of Biomimetically Breathing Pulmonary Acinar Airways.
J Vis Exp. 2016 May 9(111):53588. doi: 10.3791/53588.
8
Onset of alveolar recirculation in the developing lungs and its consequence on nanoparticle deposition in the pulmonary acinus.
J Appl Physiol (1985). 2016 Jan 1;120(1):38-54. doi: 10.1152/japplphysiol.01161.2014. Epub 2015 Oct 22.
9
Particle dynamics and deposition in true-scale pulmonary acinar models.
Sci Rep. 2015 Sep 11;5:14071. doi: 10.1038/srep14071.

本文引用的文献

1
Nanoparticle delivery in infant lungs.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):5092-7. doi: 10.1073/pnas.1119339109. Epub 2012 Mar 12.
2
Why chaotic mixing of particles is inevitable in the deep lung.
J Theor Biol. 2011 Oct 7;286(1):57-66. doi: 10.1016/j.jtbi.2011.06.038. Epub 2011 Jul 22.
4
Steady streaming: A key mixing mechanism in low-Reynolds-number acinar flows.
Phys Fluids (1994). 2011 Apr;23(4):41902. doi: 10.1063/1.3567066. Epub 2011 Apr 18.
5
Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.
J Appl Physiol (1985). 2011 May;110(5):1271-82. doi: 10.1152/japplphysiol.00735.2010. Epub 2011 Feb 17.
6
Radial transport along the human acinar tree.
J Biomech Eng. 2010 Oct;132(10):101001. doi: 10.1115/1.4002371.
7
Radiation dose optimized lateral expansion of the field of view in synchrotron radiation X-ray tomographic microscopy.
J Synchrotron Radiat. 2010 Sep;17(5):590-9. doi: 10.1107/S0909049510019618. Epub 2010 Jul 9.
8
Trajectories and deposition sites of spherical particles moving inside rhythmically expanding alveoli under gravity-free conditions.
J Aerosol Med Pulm Drug Deliv. 2010 Dec;23(6):405-13. doi: 10.1089/jamp.2009.0774. Epub 2010 May 25.
9
Flow in a terminal alveolar sac model with expanding walls using computational fluid dynamics.
Inhal Toxicol. 2010 Jul;22(8):669-78. doi: 10.3109/08958371003749939.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验