Suppr超能文献

为什么在深肺中粒子的混沌混合是不可避免的。

Why chaotic mixing of particles is inevitable in the deep lung.

机构信息

Molecular and Integrative Physiological Sciences, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.

出版信息

J Theor Biol. 2011 Oct 7;286(1):57-66. doi: 10.1016/j.jtbi.2011.06.038. Epub 2011 Jul 22.

Abstract

Fine/ultrafine particles can easily reach the pulmonary acinus, where gas is exchanged, but they need to mix with alveolar residual air to land on the septal surface. Classical fluid mechanics theory excludes flow-induced mixing mechanisms because of the low Reynolds number nature of the acinar flow. For more than a decade, we have been challenging this classical view, proposing the idea that chaotic mixing is a potent mechanism in determining the transport of inhaled particles in the pulmonary acinus. We have demonstrated this in numerical simulations, experimental studies in both physical models and in animals, and mathematical modeling. However, the mathematical theory that describes chaotic mixing in small airways and alveoli is highly complex; it not readily accessible by non-mathematicians. The purpose of this paper is to make the basic mechanisms that operate in acinar chaotic mixing more accessible, by translating the key mathematical ideas into physics-oriented language. The key to understanding chaotic mixing is to identify two types of frequency in the system, each of which is induced by a different mechanism. The way in which their interplay creates chaos is explained with instructive illustrations but without any equations. We also explain why self-similarity occurs in the alveolar system and was indeed observed as a fractal pattern deep in rat lungs (Proc. Natl. Acad. Sci. USA. 99:10173-10178, 2002).

摘要

细/超细颗粒很容易到达进行气体交换的肺腺泡,但它们需要与肺泡余气混合才能降落在隔垫表面。经典的流体力学理论排除了流动引起的混合机制,因为腺泡流的雷诺数较低。十多年来,我们一直在挑战这一经典观点,提出了混沌混合是决定吸入颗粒在肺腺泡中传输的一种有力机制的想法。我们在数值模拟、物理模型和动物实验研究以及数学模型中证明了这一点。然而,描述小气道和肺泡中混沌混合的数学理论非常复杂;非数学家很难理解。本文的目的是通过将关键数学思想转化为面向物理的语言,使腺泡混沌混合中运行的基本机制更容易理解。理解混沌混合的关键是识别系统中的两种频率,每种频率都是由不同的机制引起的。通过使用有启发性的插图来解释它们相互作用产生混沌的方式,但不使用任何方程。我们还解释了为什么肺泡系统中会出现自相似性,并且实际上在大鼠肺部深处观察到了分形图案(Proc. Natl. Acad. Sci. USA. 99:10173-10178, 2002)。

相似文献

1
Why chaotic mixing of particles is inevitable in the deep lung.为什么在深肺中粒子的混沌混合是不可避免的。
J Theor Biol. 2011 Oct 7;286(1):57-66. doi: 10.1016/j.jtbi.2011.06.038. Epub 2011 Jul 22.
2
Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.
J Aerosol Med. 1996;9(3):389-408. doi: 10.1089/jam.1996.9.389.
3
Gas and aerosol mixing in the acinus.腺泡内的气体与气溶胶混合
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):139-49. doi: 10.1016/j.resp.2008.02.010. Epub 2008 Feb 29.
4
Chaotic mixing deep in the lung.肺部深处的混沌混合。
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10173-8. doi: 10.1073/pnas.102318299. Epub 2002 Jul 15.
6
Hamiltonian chaos in a model alveolus.模型肺泡中的哈密顿混沌
J Biomech Eng. 2009 Jan;131(1):011006. doi: 10.1115/1.2953559.
9
Radial transport along the human acinar tree.沿人腺泡树的径向运输。
J Biomech Eng. 2010 Oct;132(10):101001. doi: 10.1115/1.4002371.

引用本文的文献

5
The role of anisotropic expansion for pulmonary acinar aerosol deposition.各向异性膨胀对肺腺泡气溶胶沉积的作用。
J Biomech. 2016 Oct 3;49(14):3543-3548. doi: 10.1016/j.jbiomech.2016.08.025. Epub 2016 Aug 31.

本文引用的文献

1
Radial transport along the human acinar tree.沿人腺泡树的径向运输。
J Biomech Eng. 2010 Oct;132(10):101001. doi: 10.1115/1.4002371.
2
Hamiltonian chaos in a model alveolus.模型肺泡中的哈密顿混沌
J Biomech Eng. 2009 Jan;131(1):011006. doi: 10.1115/1.2953559.
3
Carousel effect in alveolar models.肺泡模型中的旋转木马效应。
J Biomech Eng. 2008 Apr;130(2):021016. doi: 10.1115/1.2903429.
4
Gas and aerosol mixing in the acinus.腺泡内的气体与气溶胶混合
Respir Physiol Neurobiol. 2008 Nov 30;163(1-3):139-49. doi: 10.1016/j.resp.2008.02.010. Epub 2008 Feb 29.
6
The number of alveoli in the human lung.人类肺部的肺泡数量。
Am J Respir Crit Care Med. 2004 Jan 1;169(1):120-4. doi: 10.1164/rccm.200308-1107OC. Epub 2003 Sep 25.
7
Chaotic mixing deep in the lung.肺部深处的混沌混合。
Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):10173-8. doi: 10.1073/pnas.102318299. Epub 2002 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验