Suppr超能文献

基于性别的社区居家老年人跌倒预测模型

[Fall prediction model for community-dwelling elders based on gender].

作者信息

Yun Eun Suk

机构信息

Ewha Womans University, Seoul, Korea.

出版信息

J Korean Acad Nurs. 2012 Dec;42(6):810-8. doi: 10.4040/jkan.2012.42.6.810.

Abstract

PURPOSE

This study was done to explore factors relating to number of falls among community-dwelling elders, based on gender.

METHODS

Participants were 403 older community dwellers (male=206, female=197) aged 60 or above. In this study, 8 variables were identified as predictive factors that can result in an elderly person falling and as such, supports previous studies. The 8 variables were categorized as, exogenous variables; perceived health status, somatization, depression, physical performance, and cognitive state, and endogenous variables; fear of falling, ADL & IADL and frequency of falls.

RESULTS

For men, ability to perform ADL & IADL (β(32)=1.84, p<.001) accounted for 16% of the variance in the number of falls. For women, fear of falling (β(31)=0.14, p<.05) and ability to perform ADL & IADL (β(32)=1.01, p<.001) significantly contributed to the number of falls, accounting for 15% of the variance in the number of falls.

CONCLUSION

The findings from this study confirm the gender-based fall prediction model as comprehensive in relation to community-dwelling elders. The fall prediction model can effectively contribute to future studies in developing fall prediction and intervention programs.

摘要

目的

本研究旨在探讨基于性别的社区居住老年人跌倒次数相关因素。

方法

参与者为403名60岁及以上的社区老年居民(男性=206名,女性=197名)。在本研究中,8个变量被确定为可导致老年人跌倒的预测因素,这与先前的研究一致。这8个变量分为外生变量:感知健康状况、躯体化、抑郁、身体机能和认知状态,以及内生变量:害怕跌倒、日常生活活动能力和工具性日常生活活动能力以及跌倒频率。

结果

对于男性,日常生活活动能力和工具性日常生活活动能力(β(32)=1.84,p<.001)占跌倒次数方差的16%。对于女性,害怕跌倒(β(31)=0.14,p<.05)和日常生活活动能力和工具性日常生活活动能力(β(32)=1.01,p<.001)对跌倒次数有显著影响,占跌倒次数方差的15%。

结论

本研究结果证实了基于性别的跌倒预测模型对于社区居住老年人具有全面性。该跌倒预测模型可有效促进未来跌倒预测和干预项目开发的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验