Suppr超能文献

哺乳动物尿液浓缩机制相关的比较生理学和结构:啮齿动物髓质中水和尿素转运途径的作用。

Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla.

机构信息

Department of Physiology, AHSC 4128, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724-5051, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2013 Apr 1;304(7):R488-503. doi: 10.1152/ajpregu.00456.2012. Epub 2013 Jan 30.

Abstract

Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)

摘要

比较肾脏结构和功能的研究有可能深入了解哺乳动物肾脏的浓缩尿液机制。本篇综述聚焦于在啮齿动物肾髓质内不同隔室之间的液体和溶质运动中起关键作用的水和尿素的管状转运途径。水通道蛋白和尿素转运体表达方面的信息增加了我们对 Henle 袢细段、集合管和直小血管的功能分段的理解。对膜转运体和髓质结构更全面的了解确定了这些结构与间质之间新的和潜在的重要相互作用。这些相互作用正在被引入到我们对肾髓质浓缩尿液机制如何工作的概念中。各种调节途径直接或间接地导致间质和组织隔室之间的液体和溶质运动的不同模式。能够产生高浓度尿液的动物,如沙漠物种,被认为具有优化尿液浓缩的管状结构和功能。这些物种可能为浓缩尿液过程提供独特的见解。

相似文献

2
Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R748-56. doi: 10.1152/ajpregu.00300.2012. Epub 2012 Aug 22.
3
Architecture of the human renal inner medulla and functional implications.
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.
4
Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture.
Acta Physiol (Oxf). 2011 Jul;202(3):361-78. doi: 10.1111/j.1748-1716.2010.02214.x. Epub 2010 Dec 7.
5
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
6
"Avian-type" renal medullary tubule organization causes immaturity of urine-concentrating ability in neonates.
Kidney Int. 2001 Aug;60(2):680-93. doi: 10.1046/j.1523-1755.2001.060002680.x.
7
Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
Bull Math Biol. 2010 Feb;72(2):314-39. doi: 10.1007/s11538-009-9448-0.
8
Interstitial water and solute recovery by inner medullary vasa recta.
Am J Physiol Renal Physiol. 2000 Feb;278(2):F257-69. doi: 10.1152/ajprenal.2000.278.2.F257.
9
The structural organization of the kidney of the desert rodent Psammomys obesus.
Anat Embryol (Berl). 1975 Dec 23;148(2):121-43. doi: 10.1007/BF00315265.
10
Renal medullary concentrating process: an integrative hypothesis.
Am J Physiol. 1980 Dec;239(6):F578-88. doi: 10.1152/ajprenal.1980.239.6.F578.

引用本文的文献

1
Intercalated cell function, kidney innate immunity, and urinary tract infections.
Pflugers Arch. 2024 Apr;476(4):565-578. doi: 10.1007/s00424-024-02905-4. Epub 2024 Jan 16.
3
Mammalian urine concentration: a review of renal medullary architecture and membrane transporters.
J Comp Physiol B. 2018 Nov;188(6):899-918. doi: 10.1007/s00360-018-1164-3. Epub 2018 May 24.
4
Body mass-specific Na-K-ATPase activity in the medullary thick ascending limb: implications for species-dependent urine concentrating mechanisms.
Am J Physiol Regul Integr Comp Physiol. 2018 Apr 1;314(4):R563-R573. doi: 10.1152/ajpregu.00289.2017. Epub 2018 Jan 3.
6
Renal vascular pericytes: long overlooked and poorly understood, but clearly important, and what about those regulatory pathways?
Am J Physiol Renal Physiol. 2018 Jan 1;314(1):F67-F69. doi: 10.1152/ajprenal.00468.2017. Epub 2017 Sep 27.
7
The origins of urinary stone disease: upstream mineral formations initiate downstream Randall's plaque.
BJU Int. 2017 Jan;119(1):177-184. doi: 10.1111/bju.13555. Epub 2016 Jul 14.
8
Alternative channels for urea in the inner medulla of the rat kidney.
Am J Physiol Renal Physiol. 2015 Dec 1;309(11):F916-24. doi: 10.1152/ajprenal.00392.2015. Epub 2015 Sep 30.
9
Activation of protein kinase Cα increases phosphorylation of the UT-A1 urea transporter at serine 494 in the inner medullary collecting duct.
Am J Physiol Cell Physiol. 2015 Nov 1;309(9):C608-15. doi: 10.1152/ajpcell.00171.2014. Epub 2015 Sep 2.
10
Architecture of the human renal inner medulla and functional implications.
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.

本文引用的文献

1
Transepithelial water and urea permeabilities of isolated perfused Munich-Wistar rat inner medullary thin limbs of Henle's loop.
Am J Physiol Renal Physiol. 2014 Jan 1;306(1):F123-9. doi: 10.1152/ajprenal.00491.2013. Epub 2013 Nov 6.
2
Molecular physiology of the medullary collecting duct.
Compr Physiol. 2011 Apr;1(2):1031-56. doi: 10.1002/cphy.c100064.
3
Structure and function of the thin limbs of the loop of Henle.
Compr Physiol. 2012 Jul;2(3):2063-86. doi: 10.1002/cphy.c110019.
4
Axial compartmentation of descending and ascending thin limbs of Henle's loops.
Am J Physiol Renal Physiol. 2013 Feb 1;304(3):F308-16. doi: 10.1152/ajprenal.00547.2012. Epub 2012 Nov 28.
5
Basolateral targeting and microtubule-dependent transcytosis of the aquaporin-2 water channel.
Am J Physiol Cell Physiol. 2013 Jan 1;304(1):C38-48. doi: 10.1152/ajpcell.00109.2012. Epub 2012 Sep 26.
6
Architecture of vasa recta in the renal inner medulla of the desert rodent Dipodomys merriami: potential impact on the urine concentrating mechanism.
Am J Physiol Regul Integr Comp Physiol. 2012 Oct 1;303(7):R748-56. doi: 10.1152/ajpregu.00300.2012. Epub 2012 Aug 22.
7
Membrane-associated aquaporin-1 facilitates osmotically driven water flux across the basolateral membrane of the thick ascending limb.
Am J Physiol Renal Physiol. 2012 Sep;303(5):F621-9. doi: 10.1152/ajprenal.00268.2012. Epub 2012 Jun 6.
8
An online tool for calculation of free-energy balance for the renal inner medulla.
Am J Physiol Renal Physiol. 2012 Aug 1;303(3):F366-72. doi: 10.1152/ajprenal.00147.2012. Epub 2012 May 30.
9
New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.
Am J Physiol Cell Physiol. 2012 May 15;302(10):C1421-33. doi: 10.1152/ajpcell.00085.2012. Epub 2012 Mar 28.
10
New insights into urea and glucose handling by the kidney, and the urine concentrating mechanism.
Kidney Int. 2012 Jun;81(12):1179-98. doi: 10.1038/ki.2012.67. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验