Suppr超能文献

哺乳动物尿液浓缩机制相关的比较生理学和结构:啮齿动物髓质中水和尿素转运途径的作用。

Comparative physiology and architecture associated with the mammalian urine concentrating mechanism: role of inner medullary water and urea transport pathways in the rodent medulla.

机构信息

Department of Physiology, AHSC 4128, University of Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724-5051, USA.

出版信息

Am J Physiol Regul Integr Comp Physiol. 2013 Apr 1;304(7):R488-503. doi: 10.1152/ajpregu.00456.2012. Epub 2013 Jan 30.

Abstract

Comparative studies of renal structure and function have potential to provide insights into the urine-concentrating mechanism of the mammalian kidney. This review focuses on the tubular transport pathways for water and urea that play key roles in fluid and solute movements between various compartments of the rodent renal inner medulla. Information on aquaporin water channel and urea transporter expression has increased our understanding of functional segmentation of medullary thin limbs of Henle's loops, collecting ducts, and vasa recta. A more complete understanding of membrane transporters and medullary architecture has identified new and potentially significant interactions between these structures and the interstitium. These interactions are now being introduced into our concept of how the inner medullary urine-concentrating mechanism works. A variety of regulatory pathways lead directly or indirectly to variable patterns of fluid and solute movements among the interstitial and tissue compartments. Animals with the ability to produce highly concentrated urine, such as desert species, are considered to exemplify tubular structure and function that optimize urine concentration. These species may provide unique insights into the urine-concentrating process.(1)

摘要

比较肾脏结构和功能的研究有可能深入了解哺乳动物肾脏的浓缩尿液机制。本篇综述聚焦于在啮齿动物肾髓质内不同隔室之间的液体和溶质运动中起关键作用的水和尿素的管状转运途径。水通道蛋白和尿素转运体表达方面的信息增加了我们对 Henle 袢细段、集合管和直小血管的功能分段的理解。对膜转运体和髓质结构更全面的了解确定了这些结构与间质之间新的和潜在的重要相互作用。这些相互作用正在被引入到我们对肾髓质浓缩尿液机制如何工作的概念中。各种调节途径直接或间接地导致间质和组织隔室之间的液体和溶质运动的不同模式。能够产生高浓度尿液的动物,如沙漠物种,被认为具有优化尿液浓缩的管状结构和功能。这些物种可能为浓缩尿液过程提供独特的见解。

相似文献

3
Architecture of the human renal inner medulla and functional implications.人类肾内髓质的结构及其功能意义
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.
8
Interstitial water and solute recovery by inner medullary vasa recta.髓质内直小血管对间质水和溶质的重吸收
Am J Physiol Renal Physiol. 2000 Feb;278(2):F257-69. doi: 10.1152/ajprenal.2000.278.2.F257.
10
Renal medullary concentrating process: an integrative hypothesis.肾髓质浓缩过程:一个综合假说。
Am J Physiol. 1980 Dec;239(6):F578-88. doi: 10.1152/ajprenal.1980.239.6.F578.

引用本文的文献

8
Alternative channels for urea in the inner medulla of the rat kidney.大鼠肾髓质中尿素的其他转运途径。
Am J Physiol Renal Physiol. 2015 Dec 1;309(11):F916-24. doi: 10.1152/ajprenal.00392.2015. Epub 2015 Sep 30.
10
Architecture of the human renal inner medulla and functional implications.人类肾内髓质的结构及其功能意义
Am J Physiol Renal Physiol. 2015 Oct 1;309(7):F627-37. doi: 10.1152/ajprenal.00236.2015. Epub 2015 Aug 19.

本文引用的文献

2
Molecular physiology of the medullary collecting duct.集合管的髓质分子生理学。
Compr Physiol. 2011 Apr;1(2):1031-56. doi: 10.1002/cphy.c100064.
4
Axial compartmentation of descending and ascending thin limbs of Henle's loops.Henle 袢降支和升支细段的轴向分隔。
Am J Physiol Renal Physiol. 2013 Feb 1;304(3):F308-16. doi: 10.1152/ajprenal.00547.2012. Epub 2012 Nov 28.
8
An online tool for calculation of free-energy balance for the renal inner medulla.用于计算肾髓质自由能平衡的在线工具。
Am J Physiol Renal Physiol. 2012 Aug 1;303(3):F366-72. doi: 10.1152/ajprenal.00147.2012. Epub 2012 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验