Suppr超能文献

用于计算肾髓质自由能平衡的在线工具。

An online tool for calculation of free-energy balance for the renal inner medulla.

机构信息

Epithelial Systems Biology Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1603, USA.

出版信息

Am J Physiol Renal Physiol. 2012 Aug 1;303(3):F366-72. doi: 10.1152/ajprenal.00147.2012. Epub 2012 May 30.

Abstract

Concentrating models of the renal inner medulla can be classified according to external free-energy balance into passive models (positive values) and models that require an external energy source (negative values). Here we introduce an online computational tool that implements the equations of Stephenson and colleagues (Stephenson JL, Tewarson RP, Mejia R. Proc Natl Acad Sci USA 71: 1618-1622, 1974) to calculate external free-energy balance at steady state for the inner medulla (http://helixweb.nih.gov/ESBL/FreeEnergy). Here "external free-energy balance" means the sum of free-energy flows in all streams entering and leaving the inner medulla. The program first assures steady-state mass balance for all components and then tallies net external free-energy balance for the selected flow conditions. Its use is illustrated by calculating external free-energy balance for an example of the passive concentrating model taken from the original paper by Kokko and Rector (Kokko JP, Rector FC Jr. Kidney Int 2: 214-223, 1972).

摘要

根据外部自由能平衡,肾髓质浓缩模型可分为被动模型(正值)和需要外部能源的模型(负值)。这里我们引入一个在线计算工具,它实现了 Stephenson 及其同事的方程(Stephenson JL,Tewarson RP,Mejia R. Proc Natl Acad Sci USA 71: 1618-1622, 1974),用于计算肾髓质在稳态下的外部自由能平衡(http://helixweb.nih.gov/ESBL/FreeEnergy)。这里的“外部自由能平衡”是指进入和离开肾髓质的所有流的自由能流的总和。该程序首先确保所有成分的稳态质量平衡,然后为所选流动条件计算净外部自由能平衡。通过计算 Kokko 和 Rector(Kokko JP,Rector FC Jr. Kidney Int 2: 214-223, 1972)原始论文中被动浓缩模型的一个例子的外部自由能平衡来说明其用法。

相似文献

1
An online tool for calculation of free-energy balance for the renal inner medulla.
Am J Physiol Renal Physiol. 2012 Aug 1;303(3):F366-72. doi: 10.1152/ajprenal.00147.2012. Epub 2012 May 30.
3
Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney.
Bull Math Biol. 2010 Feb;72(2):314-39. doi: 10.1007/s11538-009-9448-0.
4
Inner medullary lactate production and accumulation: a vasa recta model.
Am J Physiol Renal Physiol. 2000 Sep;279(3):F468-81. doi: 10.1152/ajprenal.2000.279.3.F468.
5
Urea and renal function in the 21st century: insights from knockout mice.
J Am Soc Nephrol. 2007 Mar;18(3):679-88. doi: 10.1681/ASN.2006101108. Epub 2007 Jan 24.
6
Effect of vasa recta flow on concentrating ability of models of renal inner medulla.
Am J Physiol. 1995 Apr;268(4 Pt 2):F698-709. doi: 10.1152/ajprenal.1995.268.4.F698.
7
Inner medullary lactate production and urine-concentrating mechanism: a flat medullary model.
Am J Physiol Renal Physiol. 2003 Jan;284(1):F65-81. doi: 10.1152/ajprenal.00045.2002. Epub 2002 Aug 27.
8
A mathematical model of the urine concentrating mechanism in the rat renal medulla. II. Functional implications of three-dimensional architecture.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F372-84. doi: 10.1152/ajprenal.00204.2010. Epub 2010 Nov 10.
9
Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers.
Am J Physiol Renal Physiol. 2010 Apr;298(4):F962-72. doi: 10.1152/ajprenal.00250.2009. Epub 2009 Dec 30.
10
A mathematical model of the urine concentrating mechanism in the rat renal medulla. I. Formulation and base-case results.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F356-71. doi: 10.1152/ajprenal.00203.2010. Epub 2010 Nov 10.

引用本文的文献

1
Thermodynamic considerations in renal separation processes.
Theor Biol Med Model. 2017 Jan 26;14(1):2. doi: 10.1186/s12976-017-0048-7.

本文引用的文献

1
Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney.
Am J Physiol Renal Physiol. 2011 Nov;301(5):F1047-56. doi: 10.1152/ajprenal.00620.2010. Epub 2011 Jul 13.
2
Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney.
Am J Physiol. 1961 Jun;200:1139-47. doi: 10.1152/ajplegacy.1961.200.6.1139.
4
Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer.
Am J Physiol Renal Physiol. 2003 Mar;284(3):F433-46. doi: 10.1152/ajprenal.00067.2002.
5
UT-A2: a 55-kDa urea transporter in thin descending limb whose abundance is regulated by vasopressin.
Am J Physiol Renal Physiol. 2000 Jan;278(1):F52-62. doi: 10.1152/ajprenal.2000.278.1.F52.
6
How is urine concentrated by the renal inner medulla?
Contrib Nephrol. 1993;102:144-60. doi: 10.1159/000421921.
7
Urea transport in nephron segments from medullary rays of rabbits.
Am J Physiol. 1983 Jun;244(6):F622-7. doi: 10.1152/ajprenal.1983.244.6.F622.
8
Urea transport in isolated thick ascending limbs and collecting ducts from rats.
Am J Physiol. 1983 Nov;245(5 Pt 1):F634-9. doi: 10.1152/ajprenal.1983.245.5.F634.
9
Concentration of urine in a central core model of the renal counterflow system.
Kidney Int. 1972 Aug;2(2):85-94. doi: 10.1038/ki.1972.75.
10
Countercurrent multiplication system without active transport in inner medulla.
Kidney Int. 1972 Oct;2(4):214-23. doi: 10.1038/ki.1972.97.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验