Azin Meysam, Mohseni Pedram
Qualcomm, San Diego, CA, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:795-8. doi: 10.1109/EMBC.2012.6346051.
This paper reports on the design, analysis, implementation, and testing of a 1.5-to-5 V converter as part of a battery-powered activity-dependent intracortical microstimulation (ICMS) system-on-chip (SoC) that converts extracellular neural spikes recorded from one cortical area to electrical stimuli delivered to another cortical area in real time. The highly integrated voltage converter is intended to generate a 5-V supply for the stimulating back-end on the SoC from a miniature primary battery that powers the entire system. It is implemented in AMS 0.35 µm two-poly four-metal (2P/4M) complementary metal-oxide-semiconductor (CMOS) technology, employs only one external capacitor (1 µF) for storage, and delivers a maximum dc load current of ~88 µA with power efficiency of 31% with its output voltage adjusted to 5.05 V. This current drive capability affords simultaneous stimulation on all eight channels of the SoC with current amplitude up to ~100 µA and average stimulus rate >500 Hz, which is comfortably higher than firing rate of cortical neurons (<150 spikes per second). The measurement results also agree favorably with theoretical derivations from the analysis of converter operation.
本文报道了一款1.5至5V转换器的设计、分析、实现及测试,该转换器是电池供电的基于活动的皮层内微刺激(ICMS)片上系统(SoC)的一部分,可将从一个皮层区域记录的细胞外神经尖峰实时转换为施加到另一个皮层区域的电刺激。该高度集成的电压转换器旨在从为整个系统供电的微型原电池为SoC上的刺激后端生成5V电源。它采用AMS 0.35μm双多晶硅四金属(2P/4M)互补金属氧化物半导体(CMOS)技术实现,仅使用一个外部电容器(1μF)进行存储,在输出电压调整为5.05V时,最大直流负载电流约为88μA,功率效率为31%。这种电流驱动能力能够在SoC的所有八个通道上同时进行刺激,电流幅度高达约100μA,平均刺激速率>500Hz,这远高于皮层神经元的放电速率(<每秒150个尖峰)。测量结果也与转换器运行分析的理论推导结果非常吻合。