Seville Institute of Microelectronics (CSIC-US), 41092 Sevilla, Spain.
Sensors (Basel). 2022 Aug 26;22(17):6429. doi: 10.3390/s22176429.
This paper presents a fully integrated high-voltage (HV) neural stimulator with on-chip HV generation. It consists of a neural stimulator front-end that delivers stimulation currents up to 2.08 mA with 5 bits resolution and a switched-capacitor DC-DC converter that generates a programmable voltage supply from 4.2 V to 13.2 V with 4 bits resolution. The solution was designed and fabricated in a standard 180 nm 1.8 V/3.3 V CMOS process and occupied an active area of 2.34 mm2. Circuit-level and block-level techniques, such as a proposed high-compliance voltage cell, have been used for implementing HV circuits in a low-voltage CMOS process. Experimental validation with an electrical model of the electrode−tissue interface showed that (1) the neural stimulator can handle voltage supplies up to 4 times higher than the technology’s nominal supply, (2) residual charge—without passive discharging phase—was below 0.12% for the whole range of stimulation currents, (3) a stimulation current of 2 mA can be delivered with a voltage drop of 0.9 V, and (4) an overall power efficiency of 48% was obtained at maximum stimulation current.
本文提出了一种完全集成的高压(HV)神经刺激器,具有片上高压生成功能。它由一个神经刺激器前端组成,可提供高达 2.08 mA 的刺激电流,分辨率为 5 位,以及一个开关电容 DC-DC 转换器,可在 4.2 V 至 13.2 V 的可编程电压范围内提供 4 位分辨率。该解决方案采用标准的 180nm 1.8V/3.3V CMOS 工艺设计和制造,占用了 2.34mm2 的有源面积。电路级和模块级技术,如提出的高容限电压单元,已用于在低电压 CMOS 工艺中实现高压电路。通过对电极-组织界面的电气模型进行实验验证,表明(1)神经刺激器可以处理比工艺标称电源高 4 倍的电源电压;(2)在整个刺激电流范围内,无被动放电阶段的残留电荷低于 0.12%;(3)可以以 0.9V 的电压降提供 2mA 的刺激电流;(4)在最大刺激电流下,整体功率效率达到 48%。