Li Lin, Choi John S, Francis Joseph T, Sanchez Justin C, Príncipe José C
Department of Electrical Engineering, University of Florida, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1331-4. doi: 10.1109/EMBC.2012.6346183.
Spike trains and local field potentials (LFPs) are two different manifestations of neural activity recorded simultaneously from the same electrode array and contain complementary information of stimuli or behaviors. This paper proposes a tensor product kernel based decoder, which allows modeling the sample from different sources individually and mapping them onto the same reproducing kernel Hilbert space (RKHS) defined by the tensor product of the individual kernels for each source, where linear regression is conducted to identify the nonlinear mapping from the multi-type neural responses to the stimuli. The decoding results of the rat sensory stimulation experiment show that the tensor-product-kernel-based decoder outperforms the decoders with either single-type neural activities.
尖峰序列和局部场电位(LFPs)是从同一电极阵列同时记录的神经活动的两种不同表现形式,并且包含有关刺激或行为的互补信息。本文提出了一种基于张量积核的解码器,该解码器允许分别对来自不同源的样本进行建模,并将它们映射到由每个源的单个核的张量积定义的同一再生核希尔伯特空间(RKHS)上,在该空间中进行线性回归以识别从多类型神经反应到刺激的非线性映射。大鼠感觉刺激实验的解码结果表明,基于张量积核的解码器优于具有单一类型神经活动的解码器。