Artan N Sertac, Xu Xiaoxiang, Shi Wei, Chao H Jonathan
Department of Electrical and Computer Engineering at the Polytechnic Institute of New York University, Brooklyn, NY 11201, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1663-6. doi: 10.1109/EMBC.2012.6346266.
In neural implants, an analog-to-digital converter (ADC) provides the delicate interface between the analog signals generated by neurological processes and the digital signal processor that is tasked to interpret these signals for instance for epileptic seizure detection or limb control. In this paper, we propose a low-power ADC architecture for neural implants that process extracellular potentials. The proposed architecture uses the spike detector that is readily available on most of these implants in a closed-loop with an ADC. The spike detector determines whether the current input signal is part of a spike or it is part of noise to adaptively determine the instantaneous sampling rate of the ADC. The proposed architecture can reduce the power consumption of a traditional ADC by 62% when sampling extracellular potentials without any significant impact on spike detection accuracy.
在神经植入物中,模数转换器(ADC)提供了神经过程产生的模拟信号与数字信号处理器之间的精密接口,数字信号处理器的任务是解释这些信号,例如用于癫痫发作检测或肢体控制。在本文中,我们提出了一种用于处理细胞外电位的神经植入物的低功耗ADC架构。所提出的架构在与ADC的闭环中使用了大多数此类植入物上现成的尖峰检测器。尖峰检测器确定当前输入信号是尖峰的一部分还是噪声的一部分,以自适应地确定ADC的瞬时采样率。当对细胞外电位进行采样时,所提出的架构可以将传统ADC的功耗降低62%,而对尖峰检测精度没有任何显著影响。