Suppr超能文献

用于神经假体系统的植入式数字脉冲排序电路的功率可行性。

Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems.

作者信息

Zumsteg Zachary S, Kemere Caleb, O'Driscoll Stephen, Santhanam Gopal, Ahmed Rizwan E, Shenoy Krishna V, Meng Teresa H

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):272-9. doi: 10.1109/TNSRE.2005.854307.

Abstract

A new class of neural prosthetic systems aims to assist disabled patients by translating cortical neural activity into control signals for prosthetic devices. Based on the success of proof-of-concept systems in the laboratory, there is now considerable interest in increasing system performance and creating implantable electronics for use in clinical systems. A critical question that impacts system performance and the overall architecture of these systems is whether it is possible to identify the neural source of each action potential (spike sorting) in real-time and with low power. Low power is essential both for power supply considerations and heat dissipation in the brain. In this paper we report that state-of-the-art spike sorting algorithms are not only feasible using modern complementary metal oxide semiconductor very large scale integration processes, but may represent the best option for extracting large amounts of data in implantable neural prosthetic interfaces.

摘要

一类新型的神经假体系统旨在通过将皮层神经活动转化为假肢装置的控制信号来帮助残疾患者。基于实验室中概念验证系统的成功,目前人们对提高系统性能以及开发用于临床系统的可植入电子设备有着浓厚的兴趣。一个影响系统性能和这些系统整体架构的关键问题是,是否有可能实时且低功耗地识别每个动作电位的神经源(尖峰分类)。低功耗对于电源供应和大脑散热方面的考虑都至关重要。在本文中,我们报告了最先进的尖峰分类算法不仅使用现代互补金属氧化物半导体超大规模集成工艺是可行的,而且可能是在可植入神经假体接口中提取大量数据的最佳选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验