Suppr超能文献

分析生物力学数据以确定在机器人辅助步态康复过程中用户的参与程度。

Analysis of biomechanical data to determine the degree of users participation during robotic-assisted gait rehabilitation.

作者信息

Collantes I, Asin G, Moreno J C, Pons J L

机构信息

Bioengineering Group, Consejo Superior de Investigaciones Cientficas, Carretera de Campo Real km 0.200 Arganda del Rey, 28500 Madrid, Spain.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:4855-8. doi: 10.1109/EMBC.2012.6347081.

Abstract

Recent studies have shown evidence indicating that effective robotic rehabilitation is only possible when the user actively participates during training. Providing a complete effective biofeedback to the patient representing his compliance to the therapy and his performance is thought that his active participation will be enhanced significantly, thus, improving his rehabilitation. We have performed a study with the driven gait orthosis (DGO) Lokomat (Hocoma AG, Volketswil, Switzerland). The objective of the present study is the analysis of the effect of different types of participation (attention to the functional task) from subjects receiving robotic assisted gait training on the kinematic and kinetic patterns. The obtained results provide useful evidence of specific biomechanical features that can be used to design more useful, robust, focused and intuitive biomechanical biofeedback during robotic assisted gait rehabilitation in stroke survivors.

摘要

最近的研究表明,有证据显示只有当使用者在训练过程中积极参与时,有效的机器人康复才有可能实现。向患者提供代表其对治疗的依从性和表现的完整有效生物反馈,被认为会显著增强其积极参与度,从而改善其康复效果。我们使用驱动式步态矫形器(DGO)Lokomat(瑞士沃凯茨维尔的Hocoma AG公司)进行了一项研究。本研究的目的是分析接受机器人辅助步态训练的受试者不同类型的参与(对功能任务的关注)对运动学和动力学模式的影响。所获得的结果为特定生物力学特征提供了有用的证据,这些特征可用于在中风幸存者的机器人辅助步态康复过程中设计更有用、更稳健、更有针对性和更直观的生物力学生物反馈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验