Nagaoka Tomoaki, Watanabe Soichi
Electromagnetic Compatibility Laboratory, Applied Electromagnetic Research Institute, National Institute of Information and Communications Technology, Tokyo 184-8795, Japan.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5691-4. doi: 10.1109/EMBC.2012.6347287.
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
最近,在生物医学工程的许多领域中,人们使用时域有限差分(FDTD)方法,通过具有逼真解剖结构的计算人体模型进行电磁模拟。为了提高该方法的计算速度,并利用计算人体模型实现大规模计算,我们将三维FDTD代码应用于具有统一计算设备架构(Compute Unified Device Architecture)和消息传递接口(Message Passing Interface)的多GPU集群环境。我们的多GPU集群系统由三个节点组成。每个节点上安装了七块GPU板(NVIDIA Tesla C2070)。我们研究了在多GPU集群环境下FDTD计算的性能。我们证实,多GPU集群上的FDTD计算比多GPU(单个工作站)上的计算速度更快,并且我们还发现GPU集群系统的计算速度比向量超级计算机更快。此外,我们的GPU集群系统使我们能够进行大规模的FDTD计算,因为我们能够使用超过100GB的GPU内存。